

Mod

460

See Also:
Display, Pause

Min
Returns lowest number in a list of numbers.

Syntax:
Min(number[,number...])

Parameters:
(f) number floating point number(s).

Returns:
(f) lowest number.

Use this function to determine the lowest of a set of comma-delimited numbers.

Example:
a = Min(5, -37.5, 125, 34.26, 2345E4, -32767)
Message("Smallest number is", a)

See Also:
Abs, Average, Max, Random

Mod
An operator used to divide two numbers and return only the remainder.

Syntax:
result = number1 Mod number2

The modulus, or remainder, operator divides number1 by number2 (rounding
floating-point numbers to integers) and returns only the remainder as result. For
example, in the following expression, ret (which is result) equals 1.

MouseClick

 461

ret = 10 Mod 3
Message("Result = ", ret)

Example:
;This example grabs the Time/Day of the Week.
a=TimeYmdHms()
b=TimeJulianDay(a)
c=(b+5) mod 7
day=ItemExtract(c+1, "Sun Mon Tue Wed Thu Fri Sat", " ")
line=StrCat("Julian Date-> ", b,@CRLF,"Day of week-> ",day)
Message(TimeDate(), line)

See Also:
Operators

MouseClick
Clicks mouse button(s).

Syntax:
MouseClick(click-type,modifiers)

Parameters:
(i) click-type a mouse button press.
(i) modifiers click variations for mouse button presses.

Returns:
(i) @TRUE on success; @FALSE on error.

This function performs a mouse click at the current cursor position.

"Modifiers" can be set to 0 if none are needed.

Click-types:
@LCLICK left click
@RCLICK right click
@MCLICK middle click
@LDBLCLICK left double-click
@RDBLCLICK right double-click
@MDBLCLICK middle double-click

Modifiers (multiple modifiers can be linked together with a logical OR, "|"):

@SHIFT hold down shift key
@CTRL hold down control key
@LBUTTON hold down left mouse button
@RBUTTON hold down right mouse button
@MBUTTON hold down middle mouse button

MouseClickBtn

462

NOTE: The modifers are in effect until the click type is executed. [For example, a
Shift key plus a right mouse click would be: MouseClick(@RCLICK, @SHIFT)]

Example:
Run("notepad.exe","")
Message("Notepad Running","We will now close it via a mouseclick on
the close button")
winpos = WinPlaceGet(@NORMAL, "~Notepad")
; get coordinates for upper right corner of window
x = ItemExtract(3, winpos, " ") - 10
y = ItemExtract(2, winpos, " ") + 10
WinActivate("~Notepad")
MouseMove(x - 10, y + 10, "", "")
MouseClick(@LCLICK, 0)

See Also:
IntControl 35, MouseInfo, MouseClickBtn, MouseMove, SendKey

MouseClickBtn
Clicks on the specified button control.

Syntax:
MouseClickBtn(parent-winname,child-winname,button-text)

Parameters:
(s) parent-winname the initial part of, or an entire parent window name.
(s) child-winname the initial part or, or an entire child window name.
(s) button-text text specifying a button control.

Returns:
(i) @TRUE on success; @FALSE on error.

This function clicks on the pushbutton, radio button, or checkbox whose text is
specified by "button-text".

If the button is located within a top-level window, specify the window name in
"parent-winname" and specify a blank string ("") for "child-winname".

If the button is located within a child window, specify the top-level window name in
"parent-winname" and the child window name in "child-winname".

Example:
SendMenusTo("Exploring", "Tools | Map Network Drive")
TimeDelay(1)
;Click Reconnect at logon button
MouseClickBtn("Map Network Drive", "", "Reconnect at logon")
Message("MouseClickBtn","Reconnect at logon button clicked")

MouseInfo

 463

See Also:
MouseClick, MouseClickBtn, MouseMove, SendKey

MouseCoords
Returns coordinates of the mouse within a window.

Syntax:
MouseCoords(parent-winname,child-winname)

Parameters:
(s) parent-winname the initial part of, or an entire parent window name.
(s) child-winname the initial part or, or an entire child window name.

Returns:
(s) coordinates the x and y coordinates of the mouse cursor, relative to the

window specified by "win-name" and "child-win".

If "parent-winname" specifies a top-level window and "child-winname" is a blank
string, the specified X-Y coordinates are relative to "parent-winname".

If "parent-winname" specifies a top-level window and "child-winname" specifies a
child window of "parent-winname", the specified X-Y coordinates are relative to
"child-winname".

If "parent-winname" and "child-winname" are both blank strings, the specified X-Y
coordinates are relative to the Windows desktop.

All coordinates are based on a virtual 1000 x 1000 screen.

Note: The size and shape of displayed windows are usually based on a combination
of screen resolution and the system font size. Thus the x and y coordinates may be
different on each individual machine.

Example:
coords=MouseCoords("", "")
message("Coordinates are relative to the Windows desktop.",coords)

See Also:
MouseClick, MouseClickBtn,MouseInfo, SendKey

MouseInfo
Returns assorted mouse information.

Syntax:
MouseInfo(request#)

MouseInfo

464

Parameters:
(i) request# see below.

Returns:
(s) see below.

The information returned by MouseInfo depends on the value of request#.

Req# Return value
0 Window name under mouse
1 Top level parent window name under mouse
2 Mouse coordinates, assuming a 1000x1000 virtual screen
3 Mouse coordinates in absolute numbers
4 Status of mouse buttons, as a bitmask:

Binary Decimal Meaning
000 0 No buttons down
001 1 Right button down
010 2 Middle button down
011 3 Right and Middle buttons down
100 4 Left button down
101 5 Left and Right buttons down
110 6 Left and Middle buttons down
111 7 Left, Middle, and Right buttons down

5 returns mouse coordinates relative to the client area of the window
under the cursor, in virtual (1000x1000) screen units.

6 returns mouse coordinates relative to the client area of the window
under the cursor, in virtual (1000x1000) client units.

7 returns mouse coordinates relative to the bounding rectangle of the
window under the cursor, in virtual (1000x1000) screen units.

8 returns asynchronous status of mouse buttons, as a bitmask. This is like
request #4, except #8 returns the asynchronous (current) state of the
buttons, whereas #4 returns the state at the time the function was called.

9 Window ID of top level parent window under mouse.
10 Similar to request 0 except that the request can also return the window

name of static, hidden and disabled child windows that have a caption.
Examples of static windows include WIL Dialog VARYTEXT,
STATICTEXT and PICTURE controls.

For example, if mouse is at the center of a 640x480 screen and above the "Clock"
window, and the left button is down, the following values would be returned:

Req# Return value
0 "Clock"
1 "Clock"

MouseMove

 465

2 "500 500"
3 "320 240"
4 "4"

Note: The size and shape of displayed windows are usually based on a combination
of screen resolution and the system font size. Thus the x and y coordinates may be
different on each individual machine.

Example:
Display(1, "", "Press a mouse button to continue")
buttons = 0
while buttons == 0
 buttons = MouseInfo(4)
endwhile
If buttons & 4
 Display(1, "", "Left button was pressed")
endif
If buttons & 1
 Display(1, "", "Right button was pressed")
endif

See Also:
SysParamInfo, WinMetrics, MouseClick, MouseClickBtn, MouseMove

MouseMove
Moves the mouse to the specified X-Y coordinates.

Syntax:
MouseMove(X,Y,parent-winname,child-winname)

Parameters:
(i) X integer specifying the coordinate X.
(i) Y integer specifying the coordinate Y.
(s) parent-winname the initial part of, or an entire parent window name.
(s) child-winname the initial part or, or an entire child window name.

Returns:
(i) @TRUE on success; @FALSE on error.

This function accepts partial window names.

If "parent-winname" specifies a top-level window and "child-winname" is a blank
string, the specified X-Y coordinates are relative to "parent-winname".

If "parent-winname" specifies a top-level window and "child-winname" specifies a
child window of "parent-winname", the specified X-Y coordinates are relative to
"child-winname".

MousePlay

466

If "parent-winname" and "child-winname" are both blank strings, the specified X-Y
coordinates are relative to the Windows desktop.

All coordinates are based on a virtual 1000 x 1000 screen.

Note: The size and shape of displayed windows are usually based on a combination
of screen resolution and the system font size. Thus the x and y coordinates may be
different on each individual machine.

Example:
MouseMove(335, 110, "", "")

See Also:
MouseClick, MouseClickBtn, MouseInfo, SendKey

MousePlay
Performs full range of mouse associated activities.

Syntax:
MousePlay(X-Y-coordinates,parent-winname,child-winname,buttons,delay)

Parameters:
(s) X-Y-coordinates space-delimited string with the final mouse x and y position,

in virtual 1000x1000 units.
(s) parent-winname name of parent window to move mouse relative to, or "" to

specify the desktop.
(s) child-winname name of child window (i.e., child of "parent-window") to

move mouse relative to, or "" if the movement will be
relative to "parent".

(i) buttons combination of one or more mouse buttons and keys to click
and/or hold down (see below for list).

(f) delay amount of time to take for performing the mouse activity, in
seconds. Can be a decimal number to indicate a fraction of
a second.

Returns:
(i) returns @TRUE.

MousePlay allows you to perform the full range of mouse associated activities with
a single function.

You can simulate drag-and-drop operations by specifying the drop location in the
"X-Y-coordinates" parameter and adding the @MPLAYLBUTTON constant to the
"buttons" parameter. This tells MousePlay to move the mouse to the position x,y
with the left mouse button down.

You can perform a mouse button click at a specific location by using one of the
button click values in the "buttons" parameter.

MousePlay

 467

MousePlay can move the mouse cursor relative to the upper left-hand corner of a
window. To do this simply place a window name in the "parent window" parameter
and optionally in the "child window" parameter. If you give MousePlay a child
window name you must give it a parent name as well. When window names are
present, MousePlay considers the upper left-hand corner of the parent or child
window to be 0,0. It is, therefore, possible to give it a negative x or y value to move
the mouse cursor to the left or above the window. If the window you specify is
minimized, MousePlay will use its last un-minimized size for calculating mouse
position.

MousePlay also accepts the WIL constants @SHIFT and @CTRL in the "buttons"
parameter. You can combine these constants with a mouse button constant using the
bitwise OR ('|') operator to duplicate holding down the Shift or Control key while
performing a mouse drag-and-drop or button click.

You can use the "delay" parameter to control the amount of time MousePlay takes to
perform an action. Sometimes it is necessary to slow down the mouse so that
Windows will properly recognize the action. You may also want to slow things
down to better track events or to just give your mouse activity a natural appearance.
This parameter expects values in seconds, and only recognizes the first three digits to
the right of the decimal point.

IntControl 35 can also be used to slow down mouse clicks. If the MousePlay delay
is less than the IntControl specified time, MousePlay will take the amount of time
indicated by the IntControl setting.

Values for the "buttons" parameter:(combine using the bitwise | (OR) operator.)

Constant Meaning
@MPLAYLCLK Click left mouse button.
@MPLAYRCLK Click right mouse button.
@MPLAYMCLK Click middle mouse button.
@MPLAYLDBLCK Double click left mouse button.
@MPLAYRDBLCK Double click right mouse button.
@MPLAYMDBLCK Double click middle mouse button.
@MPLAYLBUTTON Hold down the left mouse button.
@MPLAYRBUTTON Hold down the right mouse button.
@MPLAYMBUTTON Hold down the middle mouse button.
@SHIFT Hold down the shift key.
@CTRL Hold down the control key.

Note: The size and shape of displayed windows are usually based on a combination
of screen resolution and the system font size. Thus the x and y coordinates may be
different on each individual machine.

MsgTextGet

468

Example:
Note: These examples may not run on your system due to various configuration
options.
; Example 1
; Run Explorer as a maximized window
RunZoom("explorer.exe", "")
WinWaitExist("~Exploring",5)
WinActivate("~Exploring")
; now click on the minimize button in the upper-right corner
MousePlay("956 16", "~Exploring", "", @MPLAYLCLK, 5)
exit

; Example 2
; Moves mouse cursor from lower left hand corner of the screen
; to the upper right hand corner of the screen
MousePlay("0 1000", "", "", 0, 0.2)
MousePlay("70 973", "", "", 0, 0.2)
MousePlay("589 533", "", "", 0, 0.2)
MousePlay("880 238", "", "", 0, 0.2)
MousePlay("997 107", "", "", 0, 0.2)
MousePlay("1000 0", "", "", 0, 0.2)

See Also:
IntControl 35, MouseClick, MouseClickBtn, MouseInfo, SendKey, SendKeysTo

MsgTextGet
Returns the contents of a Windows message box.

Syntax:
MsgTextGet(window-name)

Parameters:
(s) window-name full title of the message box window.

Returns:
(s) contents of the message box.

This function returns the text contents of a standard Windows message box.
"Window-name" must be the full title of the message box window, and is case-
sensitive.

Note1: This function may not work with the types of message boxes created by the
application you wish to control if it is not a standard Windows Message box.
However, if this function does work, it is the easiest way to keep tabs on an
application.

Note2: This function will not work with the types of message boxes created by most
WIL functions, since they are not standard Windows message boxes.

NetInfo

 469

Example:
msg = MsgTextGet("Microsoft Word")
If msg == "Search text not found"
 SendKey("~")
endif
Message("MsgTextGet"," Message Text Gotten.")

See Also:
WinGetActive

Net101
All network functionality for WIL is performed via "WIL Extenders", add-on Dlls
for WIL, which contain Network commands for assorted networks.

NetInfo is the only WIL network function. It returns the types of the networks
currently active on the local machine, and can be used to help determine which
network extenders should be loaded in multi-network environments.

Documentation for the various network extenders are found in associated help files.

See Also:
AddExtender, DllCall, NetInfo

NetInfo
Determines network(s) installed.

Syntax:
NetInfo(requestcode)

Parameters:
(i) requestcode 0 for primary network name

1 for secondary subnet list

Returns:
(s) Primary network name for request code 0, or

Secondary network list for request code 1.

Use this function to determine the network type(s) running on a workstation. When
running in a mixed network environment, it may be important to be able to determine
the types of networks running on a workstation so as to be able to load the
appropriate network extender Dlls and issue the corresponding commands.

NetInfo(0) will return the string "WINNT" for 32 bit Windows platforms.

Under Windows NT and newer, NetInfo(1) will return a list of installed network
provider ID's, delimited with the standard file delimiter (by default, a tab).

Possible providers, with their corresponding descriptions, are:

ObjectClose

470

Provider ID Description
LanmanWorkstation Microsoft Windows Network
NetWareWorkstation NetWare Services
NWCWorkstation NetWare or Compatible Network

Example:
a = NetInfo(0)
b = NetInfo(1)
;NT or newer
c = "Network Provider ID's: "
d = StrReplace(b, @tab, ",")
rslt = StrCat("Primary Network Name: ", a, @CRLF, c, d)
Message("NetInfo Results", rslt)

See Also:
AddExtender, DllCall, Net101

Num2Char
Converts a number to its character equivalent.

Syntax:
Num2Char(number)

Parameters:
(i) number any number from 0 to 255.

Returns:
(s) one-byte string containing the character which the number

represents.

Use this function to convert a number to its ASCII equivalent.

Example:
; Build a variable containing a CRLF combo
crlf = StrCat(Num2Char(13), Num2Char(10))
Message("NUM2CHAR", StrCat("line1", crlf, "line2"))

See Also:
Char2Num, IsNumber

ObjectClose
Closes an COM/OLE Automation object

Syntax:
ObjectClose(objecthandle)

Parameters:
(r) objecthandle handle of object to close.

ObjectClrNew

 471

Returns:
(i) @TRUE.

ObjectClose is now obsolete. When WIL processing for an object is complete,
set the object variable to a null string to free WIL processor memory.
objVar = ""

The ObjectClose function closes an object and frees WIL processor memory. The
parameter passed to ObjectClose must be the same variable that the return value
from the corresponding ObjectOpen was placed into. Otherwise the function will
fail.

Example:
objFSO = ObjectOpen("Scripting.FilesystemObject")
objDrives = objFSO.Drives
ForEach objDrive in objDrives
 Message("", objDrive.Path)
Next
ObjectClose(objFSO)

See Also:
COM, ObjectOpen

ObjectClrNew
Creates a class, structure or enumeration implemented by a managed assembly. The
function returns a Framework based type as a COM Automation reference that can
be used to access the members of the underlying Framework based type.

Syntax:
ObjectClrNew(typename [, ctorparm,...])

Parameters:
(s) typename The name of a Framework based class, structure or

enumeration. The name must be fully qualified by including
the dot (.) separated namespace prefixed to the type's
immediate name. The namespace name and immediate
name must also be separated by a dot character.

(s/i/f/v) ctorparm 0 to 15 constructor parameters to be used when creating a
type. Since type constructors can be overloaded, the type
and number of these parameters control which constructor
will be used to create the type.

Returns:
(r) object reference.

The assembly implementing the type specified by 'typename' must be loaded into the
WinBatch process before this function can be called to create the type. The

ObjectClrNew

472

exceptions to this requirement are types implemented by the "mscorlib" assembly.
This assembly is automatically loaded by WinBatch when the CLR is loaded. All
other assemblies must be loaded into the WinBatch process using the
ObjectClrOption function's Use option.

Members of the returned object reference are called using the same variable-
name+dot+member-name syntax used by standard COM Automation object
references. However, there are some important differences between regular COM
calls and CLR type member calls. The most significant difference is that CLR
constructors and type member names can be overloaded. This means that more than
one member can have the same name. When more than one member has the same
name, WinBatch and the CLR determine which member to call based on the number
and type of the parameters passed in the call statement. The combination of member
name, parameter types and parameter count is called the member's signature. This
means that using the correct type for each parameter is crucial to calling the correct
member.

Both member overloading and the fact that WinBatch cannot query the object for
type information before making a member call, as it does with regular COM
Automation references, means that the colon (:) type qualifier needs to be used more
frequently on CLR object member parameters. Fortunately, WinBatch will take
standard variant type names like BSTR, UI8, BOOLEAN, R8, e.g., and convert them
to equivalent Framework types automatically. It will also automatically deduce the
correct Framework type for variant variables passed as parameters to a member
without needing to specify a type with the colon qualifier. When a Framework based
type does not have equivalent variant type, the fully qualified Framework based type
name can be used with colon type qualifier on a parameter. This is most often
necessary when the object member is expecting an up-cast or down-cast of
Framework based class, when it is expecting a value from a Framework based
enumeration, or when it is expecting an array with elements of a specific Framework
based type. In the case of arrays, the type qualifier should be the Framework based
type of the elements prefixed to the variable name of a variable that holds either a
WIL array or a variant safearray. No array type information ('ARRAY' or
'System.Array') should be included in the type qualifier. When using a Framework
type name qualifier with any parameter the type qualifier's assembly must be loaded
before the member with the qualified parameter is called.

Another significant difference between standard COM Automation object and
Framework based wrapped objects is that unlike standard COM Automation objects,
Framework based object member names are case sensitive.

The function allows access to most Framework based types and their members but
there are a few limitations and restrictions. The following is a partial list of those
limitations and restrictions:

ObjectClrOption

 473

• WinBatch relies on the CLR hosting's reflection functionality to instantiate
classes. There are a few classes attributed to block instantiation via
reflection.

• WinBatch does not support 'out' parameters. Method without parameters
can still be called but 'out' parameter values are not modified on the
method's return.

• Class member overloads that rely solely on the return type and name for
their signature cannot be used.

• Value types (structures) that only provide a multiple parameter
constructor(s) cannot be used.

• A small number of type member names conflict with WinBatch identifier
naming rules and cannot be called directly.

• Parameterize properties are not supported.

Example:
objDirectory = ObjectClrNew('System.IO.Directory')
path = 'C:\temp\'
ret = objDirectory.Exists(path)
If ret
 Pause('Directory Exist?', 'Yes')
Else
 Pause('Directory Exist?', 'No')
EndIf
Exit

See Also:
ObjectClrOption, ObjectClrType, ObjectType, ObjectTypeGet

ObjectClrOption
Sets CLR configuration options before the CLR is loaded and loads an assembly into
the current WinBatch process.

Syntax:
ObjectClrOption (option-name, option-value)

Parameters
(s) option-name available options are "version", "appbase", or "use". See

below for details.
(s) option-value CLR version string, file system path, or assembly name

depending on the option-name.

Returns:
(i) @TRUE on success.

ObjectClrOption

474

Option-Name Option-Value

version Use this option to instruct WinBatch to load a specific version
of the CLR. The option-value parameter string must start with
the character "v" followed by the first three parts of the version
number. Currently, Microsoft provides the following CLR
versions "v1.0.3705","v1.1.4322","v2.0.50727" and
"v4.0.30319". The option must be set before the first call to this
function with the "use" option or before the first call to the
ObjectClrNew function. If the "version" option is not used
before the CLR is loaded, WinBatch will attempt to load the
current system's latest installed version of the CLR.

appbase The option-value parameter for this option is used to indicate
the full file system path that presents the location of assemblies
you plan on using in your script that are not installed into the
global assembly cache (GAC) of the system running the script.
This option must be set before the first call to this function
setting a "use" option or before the first call to the
ObjectClrNew function.

You DO NOT use the name of the file containing the
assemblies with the 'appbase' option. You DO specify the full
(not partial) path to the location of the assemblies you are
going to use in your script that are not in the GAC. Logically
this means that all non GAC assemblies need to be placed in
the same directory for a given script

version This option is used to load assemblies into the WinBatch
process. Assemblies must be loaded before the types the
assembly implements can be used. The option-value parameter
for this option must be a string variable or literal containing an
assembly name. If an assembly is stored in the GAC, it is
generally necessary to use the fully qualified assembly name.
The fully qualified assembly name has the format "assembly's
name, version=x.x.x.x,
culture=xxxx,PublickeyToken=xxxxxxxxxxxxxxxx". For
example, the fully qualified name of the "System.Data"
assembly is "System.Data, version=1.0.3300.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089". Full
assembly names can be found by using the Mscorcfg.msc tool,
by view the Global Assembly Cache (GAC) directory directly,
or by using the Gacutil.exe tool.

Example:
process = 'C:\Windows\Notepad.exe'
friendlyname = 'Notepad'

ObjectClrType

 475

; Version - Instruct WinBatch to load a specific version of the CLR
ObjectClrOption ("version","v4.0.30319")
; Use - Load assembly into the WinBatch process
ObjectClrOption ("use","System, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089")
objnetProcess = ObjectClrNew("System.Diagnostics.Process")
; Start a process
objnetProcess.Start(process)
TimeDelay(1)
; GetProcessesByName method
; Creates an array of new Process components and associates them with
; all the process resources on the local computer that share the ;
specified process name.
arrProcesses = objnetProcess.GetProcessesByName(friendlyname)
If ArrInfo(arrProcesses, 1) >= 1
 ; Get first matching process
 myProcess = arrProcesses[0]
 myProcess = ObjectClrType("System.Diagnostics.Process",myProcess)
 ; Tests the Responding property for a @True return value.
 action = 'No Op '
 If myProcess.Responding
 myProcess.CloseMainWindow()
 action = 'Closed '
 Else
 ;Forces the process to close if the Responding value is @False.
 myProcess.Kill()
 action = 'Killed '
 EndIf
EndIf
Pause(friendlyname, action : friendlyname)
Exit

See Also:
ObjectClrNew, ObjectClrType, ObjectType, ObjectTypeGet

ObjectClrType
Associate a Framework based type name with a value, or to up-cast or down-cast
Framework based object references.

Syntax:
ObjectClrType (typename, value-ref)

Parameters
(s) typename name of a Framework based class, structure or enumeration.

The name must be fully qualified by including the dot (.)
separated namespace prefixed to the type's immediate
name. The namespace name and immediate name must also
be separated by a dot character.

ObjectClrType

476

(s/i/f/v) value- ref simple string, integer, float, variant or a reference to a
Framework based object.

Returns:
(r) special WIL variant containing a reference to an Unknown interface.

Use this function to either associate a Framework based type name with a value, or
to up-cast or down-cast Framework based object references.

If the second parameter is a simple string, integer, float, or variant that is NOT a
reference to a Framework based object, the returned reference can ONLY be used as
a parameter to a Framework based object method call, as the right-hand side of a
Framework based object property assignment or a constructor argument in a call to
ObjectClrNew. In other words, the returned reference does not have user callable
methods, properties or fields.

On the other hand, if the second parameter is a reference to a Framework based
object and the first parameter is the typename of a base or derived type of that object
then the returned reference can be used to access the members of either the base or
derived type of the input object.

If the second parameter does NOT contain a Framework based object reference, the
assembly implementing typename must be loaded BEFORE the return reference is
used as a method parameter, property value or constructor argument. If the second
parameter contains a Framework based object reference, the assembly implementing
typename must be loaded BEFORE this function is called.

Example:
See ObjectClrNew Example.

See Also:
ObjectClrNew, ObjectClrOption, ObjectType, ObjectTypeGet

ObjectConstantsGet

Creates a Constants object.

Syntax:
ObjectConstantsGet(object)

Parameters
(r) object reference COM object reference.

Returns:
(r) constants object reference.

Use this function to create a constants object for a COM Automation object:
adoApp = ObjectCreate("ADODB.Connection")
adoConst = ObjectConstantsGet(adoApp)

ObjectClrType

 477

The function will produce an error, if the supplied parameter is not a COM object or
is a COM object that does not have any associated constants.

A constants object is a special WIL language construct that allow you to access the
constant values associated with a COM object by name. You access values by using
the constants.name syntax where constants is the name of the variable holding this
function’s return and name is the name of constant whose value you wish to use. For
instance, if the constants object from the example above is used, then
conVal = adoConst.adBSTR

assigns the value of the constant adBSTR to the variable conVal. In this case, the
constant adBSTR has the value eight(8), so after the assignment the variable conVal
will hold the number 8.

You can use the constants.name syntax anywhere you would use a literal. This
includes using it as an object method parameter, as the right-hand-side of an object
property assignment, and in relational and arithmetic expressions. You cannot,
however, assign a new value to an individual constant name. They are in effect read-
only.

NOTE: This function may have an impact on the performance of your scripts. Some
COM objects have thousands of constants and you may experience a small delay
while the function collects the constants’ names and values.

Example:
This example uses the ObjectConstantsGet function to obtain the constants
associated with the ADODB.RecordSet object. The constants are then used to set the
CursorLocation property and to specify the data types for each record field.

; Get a recordset object reference.
objRs = ObjectCreate("ADODB.RecordSet")

; Get the constants object for RecordSet
conRs = ObjectConstantsGet(objRs)

; Set cursor source using constant.
objRs.CursorLocation = conRs.adUseClient

; Create record fields using constants
; for Append’s data types parameter.
objRs.Fields.Append("MyText",conRs.adVarwchar,30)
objRs.Fields.Append("MyDecimal",conRs.adDecimal)
objRs.Fields("MyDecimal").DefinedSize = 19
objRs.Fields("MyDecimal").Precision = 18
objRs.Fields("MyDecimal").NumericScale = 6
objRs.Fields.Append("MyBoolean",conRs.adBoolean)
objRs.Fields.Append("MyDate",conRs.adDate)

; Commit the record metadata

ObjectConstToArray

478

objRs.Open()
objRs.Addnew()

; ... Add data to the record set here...

; ... save records to disk here...

; Clean up.
objRs.Close()
conRs = 0
objRs = 0

See Also:
ObjectConstToArray, ObjectCreate, ObjectGet

ObjectConstToArray
Creates an array of Constants object names and values.

Syntax:
ObjectConstToArray(constants-object)

Parameters
(r) constants-object constants object reference.

Returns:
(a) two dimensional array of constants names and values.

ObjectConstToArray creates an array that contains the textual names and numeric
values of a constants object:
adoApp = ObjectCreate("ADODB.Connection")
adoConst = ObjectConstantsGet(adoApp)
aConstants = ObjectConstToArray(adoConst)

This function can be used during the script writing process to examine the contents
of a constants object obtained using the ObjectConstantsGetfunction.

Note: Refer to the ObjectConstantsGet documentation for details about constants
object.

The returned array has two dimensions. There is one row for each constant and two
columns for each row. The first column contains the string name of a constant and
the second column contains the value of the constant. The name is the same one
used following the dot (.) in the constants.name syntax and the value is the same one
returned by constants.name.

In addition, row zero column zero of the array contains the number of constants
stored in the array. Using the example above, the number of constants is obtained
with:
nNumberOfConstants = aConstants[0,0]

ObjectCreate

 479

The name of the first constant stored in the array is accessed with:
sName = aConstants[1,0]

And the first value is accessed with:
nValue = aConstants[1,1]

Example:
This example uses the ObjectConstToArray function to create an array of the
constants associated with the “Excel.Application” object. The contents of the array
are then displayed in a message box, one row at a time.
; Get the Excel application object.
objXL = ObjectCreate("Excel.Application")

; Get the constants object.
constXL = ObjectConstantsGet(objXL)

; Create an array of constants.
aXL = ObjectConstToArray(constXL)

; Display each name and value.
; (There are over 1500 of them.)
for i = 1 to aXL[0,0]
 sTittle = Strcat(" Constant No. ", i)
 sText = Strcat(aXL[i,0], " = ",aXL[i,1])
 message(sTittle, sText)
next

; Clean up
constXL = 0
objXL = 0

See Also:
ObjectConstantsGet, ObjectCreate, ObjectGet

ObjectCreate
Creates and returns a reference to a COM object.

Syntax:

ObjectCreate(progid[,location])

Parameters

(s) progid The programmatic identifier of the object to create, usually
in the form servername.classname.

ObjectCreate

480

(s) location [optional] The name of the network server where the object
will be created. If Location is an empty string ("") or
omitted, the local machine is used.

Returns:

(r) COM object reference.

To create an instance of a COM object, assign the return value of ObjectCreate to a
variable:
adoApp = ObjectCreate("ADODB.Connection")

As shown in the examples that follow, you can access properties and methods of the
object using the object variable and dot (.) notation.

You can create an object on a remote networked computer by passing the name of
the computer to the Location argument of the ObjectCreate function. That name is
the same as the Machine Name portion of a share name. i.e.: for a share named
"\\MyServer\Public", the Location is "MyServer".

The following code returns the version number of an instance of Excel running on a
remote computer named MyServer:
 ; Replace string "\\MyServer" with name of the remote computer.
 xlObj = ObjectCreate("Excel.Application", "\\MyServer")
 message("Remote Excel version", xlObj.Version)
 xlObj = ""

Note: Refer to Microsoft documentation for additional information on making an
application accessible on a remote networked computer.

Use ObjectCreate when there is no current instance of the object. If, however, an
instance of the object is already running, ObjectCreate starts a new instance, and an
object reference of the specified type is returned. To use the current instance or to
start the application and have it load a file, or to access an object using a moniker,
use the ObjectGet function. If an object has registered itself as a single-instance
object, only one instance of the object is created, no matter how many times
ObjectCreate is executed.

Each COM object reference consumes system resources so it is best to hold a
reference only as long as necessary. You can release a reference to an object by
simply assigning a new value to the object variable. Some object servers require that
a termination method be called before an object’s last reference is released. Check
your COM server documentation for details.

Note: The legacy function ObjectClose can still be used to release an object
reference. However, continued use of the function is discouraged.

ObjectCreate vs. ObjectGet: What's the Difference?

ObjectCreate

 481

Besides minor differences in the syntax, the ObjectCreate and ObjectGet functions
are used in different contexts. The differences can be summarized as follows:

• ObjectCreate is used to create an interface to a new instance of an application.
Use ObjectCreate when it's not certain whether the application to integrate is
running. For example:

 xl = ObjectCreate ("Excel.Application")

starts Microsoft Excel. The object returned in xl is a reference to the
Excel.Application object just created.

• ObjectGet is used with an application that's already running, or to start an
application with a file already loaded. For example:

 xlBook = ObjectGet ("C:\TEST.XLS")

would start Microsoft Excel with the file Test.xls already loaded. The object
returned would be a reference to the Workbook object representing the just
opened Test.xls file.

Example:

This example uses the ObjectCreate function to create a Microsoft Internet Explorer
window and display a Web page. To use this example, Internet Explorer must be
installed on the computer where this program will run.
objExplorer = ObjectCreate("InternetExplorer.Application")
objExplorer.addressbar = @FALSE
objExplorer.statusbar = @FALSE
objExplorer.menubar = @FALSE
objExplorer.toolbar = @FALSE
objExplorer.visible = @TRUE
objExplorer.Width = 800
objExplorer.Height = 550
objExplorer.Left = 0
objExplorer.Top = 0
objExplorer.navigate("http://www.winbatch.com/")

; Wait until page loads...
While objExplorer.busy || objExplorer.readystate<> 4
 TimeDelay(0.5)
EndWhile

; Do something.
objExplorer.quit
objExplorer = ""

See Also:

ObjectGet, CreateObject, ObjectConstantsGet, ObjectConstToArray

ObjectEventAdd

482

ObjectEventAdd
Associates a User-Defined-Function or subroutine with a COM object event.

Syntax:
ObjectEventAdd(object-reference,event-name,UDF-name)

Parameters:
(r) object-reference variable containing an object reference
(s) event-name name of event to be handled
(s) UDF-name name of UDF/UDS event handler

Returns:
(i) @TRUE on success; @FALSE on failure

ObjectEventAdd binds a User-Defined-Function or subroutine to a COM object
event. COM object events are notifications sent to a script in response to some
action or object state change. Events can even be fired in response to an action taken
by your script. Once your event handling User-Defined-Function or subroutine is
bound to an event, the COM object calls your UDF/UDS when ever the event occurs.

For many events, your script must pause execution long enough to receive the event.
You can pause your script by placing the TimeDelay function in a While or For
loop. You can also use a WIL dialog, one of the built-in dialogs or one of the "wait"
functions to pause script execution. If you do choose a TimeDelay or "wait" loop,
remember to include logic for loop termination.

Note: While you can pause your script in a User-Defined-Function or even a nested
call to a User-Defined-Function, a User-Defined-Subroutine event handler's variable
scope is always the outer most scope of the script. This means that variables created
from within the "pausing" User-Defined-Function are not available to event handling
User-Defined-Subroutine.

object-reference

The first parameter is a reference to the object whose event you wish to handle. The
parameter must be a variable containing an object reference. Object references can
be obtained by calling the ObjectCreate, ObjectGet, or DialogObject function.

event-name

This is the name associated with the event you wish to handle. Consult a COM
object's documentation to find the names of events supported by an object.

UDF-name

The third parameter is the name of the User-Defined-Function or subroutine that will
handle the event. The UDF/UDS must be defined before you call the
ObjectEventAdd function. The UDF/UDS definition must also contain the number
of parameters specified for the event handler by the object's documentation. If the

ObjectEventAdd

 483

event supports "out" parameters, you can assign values to these parameter variables
inside your handler and the values will be passed back to the COM object. Consult
the object's documentation to determine if any of the parameters can return values to
the object.

Example:
;This example uses the ObjectEventAdd function and a WMI event to
;monitor the Run registry key. The script uses the WaitForKeyEx
;function in a loop to pause while waiting for a registry change.
;Script processing completes when the key change event fires or the
;user presses the Esc key.

bNoEvent = @True ; Initialize loop control variable

; WMI event OnObjectReady subroutine handler
#DefineSubroutine OnObjectReady(objWbemObject, objWbemAsyncContext)
Message("Registry Key Change", objWbemObject.GetObjectText_())
bNoEvent = @False ; Causes loop to exit
return
#EndSubroutine

; Need the WMI service and sink objects
objWmiServices = ObjectGet("winmgmts:root/default")
objWmiSink = ObjectCreate("WbemScripting.SWbemSink")

; Bind the event handler to the WMI event
ObjectEventAdd(objWmiSink, "OnObjectReady", "OnObjectReady")

; Create the WMI query to check for modifications to the Run key
sHive = "Hive='HKEY_LOCAL_MACHINE'"
sKey =
"KeyPath='SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run'"
sQuery = "SELECT * FROM RegistryKeyChangeEvent"
sQuery = StrCat(sQuery, " WHERE ", sHive, " AND ", sKey)

; Start the registry monitor
objWmiServices.ExecNotificationQueryAsync(objWmiSink , sQuery)

; Loop until the registry changes
BoxOpen("Waiting for a registry key to change.", "Press ESC key to
quit")
while bNoEvent
if WaitForKeyEx("{ESC}", 1) == 1
break ; Esc key pressed
endif
endwhile
BoxShut()

; Remove the event.
ObjectEventRemove(objWmiSink, "OnObjectReady")

; To be safe shut down the WMI event sink

ObjectEventRemove

484

objWmiSink.Cancel()
objWbemObject = 0
objWbemAsyncContext = 0
objWmiSink = 0
objWmiServices = 0

See Also:
ObjectEventRemove, ObjectCreate, ObjectGet,

ObjectEventRemove
Cancels the association between a User-Defined-Function or subroutine and a COM
object event.

Syntax:
ObjectEventRemove(object-reference,event-name)

Parameters:
(r) object-reference variable containing an object reference
(s) event-name name of event being handled as a string

Returns:
(i) @TRUE on success; @FALSE on failure.

ObjectEventRemove breaks the previously established link between a User-
Defined-Function or subroutine and a COM object event. Once the link is broken,
your User-Defined-Function or subroutine will no longer execute when the COM
object fires the indicated event.

You can also break the link between an event and your event handling function or
subroutine by releasing all references to the COM object associated with the event.
This is usually done by assigning a zero (0) to all variables holding a reference to the
COM object. This function is provided for the occasion where you wish to stop
handling an event but wish to continue using the COM object in your script.

object-reference

The first parameter is a reference to the object whose event you wish to stop
handling. The parameter must be a variable containing an object reference and the
reference must have been previously used in a successful call to ObjectEventAdd.

event-name

The second parameter is the name of the event you wish to stop handling. The event
name must have been previously used in a successful call to ObjectEventAdd.

Example:
;This example illustrates a script wrapper for Excel which uses the
;ObjectEventRemove function to remove events when the initial Excel
;workbook is closed. The script also demonstrates that is possible
;to remove events from within event handlers.

ObjectEventRemove

 485

#DefineSubRoutine WorkbookBeforeClose(objWorkbook, bCancel)
; This is called when you choose to close the workbook in Excel.
; The event handlers are removed, and then the workbook is closed
; without saving changes.
ObjectEventRemove(objXlApp, "SheetChange")
ObjectEventRemove(objXlApp, "WorkbookBeforeClose")
objWorkbook.Saved = @True ; Set the dirty flag to true so there
; is no prompt to save.
bDone = @True ; End event loop
#EndSubRoutine

#DefineSubRoutine SheetChange(objSheet, objTarget)
;This is called when a cell or cells on a worksheet are changed.
sWhere = StrCat(objTarget.Address, " on ",
objTarget.Worksheet.Name())
Message("You Changed Cells", sWhere)
#EndSubroutine

;Start Excel and create a new workbook.
bDone = @False ; Event loop control variable
objXlApp = ObjectCreate("Excel.Application")
objXlBook = objXlApp.Workbooks.Add()
objXlBook.Windows(1).Caption = "Event Handler Example"

objXlBook.Worksheets.Item(1).Activate()

;Add an event handler for the WorkbookBeforeClose Event of the
;Application object.
ObjectEventAdd(objXlApp,"WorkbookBeforeClose","WorkbookBeforeClose")

; Add an event handler for the SheetChange event of all Worksheet
; objects.
ObjectEventAdd(objXlApp,"SheetChange","SheetChange")

;Make Excel visible and give the user control.
objXlApp.Visible = @True
objXlApp.UserControl = @True

; Event processing loop
while !bDone
 TimeDelay(1)
endwhile

; Add a fresh workbook before exiting in case
; the user closed the workbook but not Excel
objXlBook = objXlApp.Workbooks.Add()
objXlBook.Windows(1).Caption = "Event Handler Example (No Events)"

objWorkbook = 0
objTarget = 0
objSheet = 0
objXlBook = 0

ObjectGet

486

objXlApp = 0

See Also:
ObjectEventAdd, ObjectCreate, ObjectGet

ObjectGet
Returns a reference to an object provided by a COM/OLE component.

Syntax:
ObjectGet([moniker[,progId]])

Parameters:
(s) moniker [optional] A name for a namespace or class, or the full path

and name of a file associated with an object. If moniker is
omitted,progId is required.

(s) progId [optional] The programmatic identifier of the object to
create, usually in the form servername.classname.

Returns:
(r) COM/OLE object reference.

Use the ObjectGet function to load an instance of a COM/OLE object from a file.
For example:
xlObject = ObjectGet("c:\Projects\Test\exceltest.xls")

When this code is executed, the application associated with the specified file path
and name is started and the associated object is activated.

If moniker is a zero-length string (""), ObjectGet returns a new object instance as
specified by ProgId . If the moniker argument is omitted, ObjectGet returns the
currently active progId object. If no object of type progId is running, an error occurs.
For example:
xlObject = ObjectGet(, "Excel.Application")

If Excel is not running, the above line will cause an error.

If you do not specify the object's progId with a file and path, the system determines
the application to start and the object to activate, based on the file name you provide.
Some files, however, may support more than one class of object. To specify which
object in a file you want to activate, use the optional progId argument.

Once an object is activated, you reference it in your script using the object variable
you defined. In the preceding example, you access properties and methods of the
new object using the object variable xlObject. For example:
; Set the value of the first cell of worksheet 1.
xlObject.Worksheets(1).Range("A1").Value = "2.5"

ObjectGet

 487

The Moniker parameter accepts strings other than file paths and names. Many
monikers consist of a namespace, and an object path with a class name. These
monikers are often used to report on or manage operating system services. Some
namespace examples include “winmgmts:” which is used to access WMI service and
“LDAP:” which is used to access Directory Services.

Sometimes monikers can contain multiple namespaces. For example, the following
WMI namespace moniker identifies the Win32_LogicalDisk class in the root\cimv2
namespace on the 'myServer' server:
WinMgmts:{impersonationLevel=impersonate}!//myServer/root/cimv2:Win32
_LogicalDisk

Here is an example of an LDAP namespace moniker that identifies an Active
Directory user object using the toons server:
LDAP://toons/CN=Daf Duckus,CN=users,DC=acme,DC=com

Note: Refer to Microsoft documentation for additional information on WMI and
Active Directory Services Interfaces classes, properties and methods.

Each COM/OLE object reference consumes system resources so it is best to hold a
reference only as long as necessary. You can release a reference to an object by
simply assigning a new value to the object variable. Some object servers require that
a termination method be called before an object’s last reference is released. Check
your COM/OLE server documentation for details.

Note: The legacy function ObjectClose can still be used to release an object
reference. However, continued use of the function is discouraged.

ObjectCreate vs. ObjectGet: What's the Difference?

Besides minor differences in the syntax, the ObjectCreate and ObjectGet functions
are used in different contexts. The differences can be summarized as follows:

• ObjectCreate is used to create an interface to a new instance of an application.
Use ObjectCreate when it's not certain whether the application to integrate is
running. For example:

 xl = ObjectCreate ("Excel.Application")

starts Microsoft Excel. The object returned in xl is a reference to the
Excel.Application object just created.

• ObjectGet is used with an application that's already running, or to start an
application with a file already loaded. For example:

 xlBook = ObjectGet ("C:\TEST.XLS")

ObjectType

488

would start Microsoft Excel with the file Test.xls already loaded. The object
returned would be a reference to the Workbook object representing the just
opened Test.xls file.

Example:
This example uses the ObjectGet function to get a reference to a WMI service
object. It then uses the object's ExecQuery method to obtain a collection of operating
systems installed on the local computer. The collection is then enumerated for the
version of the last service pack installed on the machine.
objWMIService =
ObjectGet("winmgmts:{impersonationLevel=impersonate}!\\.\root\cimv2")
colOS = objWMIService.ExecQuery ("Select * from
Win32_OperatingSystem")
; Use a ForEach In loop to iterate the Operating System collection.
ForEach objOS in colOS
 sVersion =
StrCat(objOS.ServicePackMajorVersion,".",objOS.ServicePackMinorVersio
n)
 Message ("Service Pack Version" , sVersion)
Next

See Also:

GetObject, ObjectCreate, ObjectConstantsGet, ObjectConstToArray

ObjectOpen
Opens or creates an COM/OLE Automation object

ObjectOpen has been superceded with the function ObjectCreate.

ObjectType
Creates a WIL variable with a specific COM/OLE variant type.

Syntax:
ObjectType(variant-type,value)

Parameters:
(s) variant-type see below.
(s/i) value value of the variable.

Returns:
(i) a WIL variable with a specific COM/OLE variant type.

"variant-type" can be one of the following:

Variant-type Value to specify

ObjectType

 489

BSTR A string
I1 A 1-byte character value
I2 A 2-byte integer value
I4 A 4-byte integer value.
I8 A 8-byte integer value.
UI1 An unsigned 1-byte character.
UI2 An unsigned 2-byte character.
UI4 An unsigned 2-byte character.
BOOL A Boolean (True/False) value.
CY A currency value, specified as a string in the form

"#CURRENCY:value".
DATE A date/time value, specified as a string in Ymd or YmdHms

format
DECIMAL A decimal value, specified as a string in the form

"#DECIMAL:value".
NULL A blank string ("").
ARRAY A safe array.
BYREF A pointer to a reference to data.
DISPATCH A pointer to an object was specified. This object is known only to

implement IDispatch.
UNKNOWN A pointer to an object that implements the IUnknown interface.

You can only specify the value 0 to create a NULL
VT_UNKNOWN variant.

The "variant-type" may be preceded by the prefix "VT_", so for example you could
specify either "BOOL" or "VT_BOOL".

ObjectType can convert WIL arrays and binary buffers to variant safearrays of a
specific type. Request conversion by prepending "ARRAY|" to the variant element
type in the first parameter. The function's second parameter should contain a WIL
array, a Variant safearray or a binary buffer when using the "ARRAY|" specification.
The special type specification "ARRAY|VARIANT" can be used to convert WIL
arrays already containing multiple variant types into a safearrays of type VARIANT.

When an COM/OLE method or property returns a value that is one of these
supported variant types, WinBatch now retains the variant type for the returned
variable, without having to use the ObjectType function. However, if you
subsequently assign a new value to that variable using a regular WIL assignment
operator, the variant type information will be lost. For example:
visible = ExcelApp.Visible
ExcelApp.Visible = visible

The variable "visible" is returned as a VT_BOOL, and is still a VT_BOOL when it is
passed back to the COM/OLE object. But here:

ObjectType

490

visible = ExcelApp.Visible
visible = 0
ExcelApp.Visible = visible

The assignment "visible = 0" causes "visible" to become an ordinary WIL integer,
without a variant type. In that case, if you wanted it to be a VT_BOOL you would
need to use ObjectType:
visible = ObjectType("BOOL", 0)
ExcelApp.Visible = visible

Or simply:
ExcelApp.Visible = ObjectType("BOOL", 0)

Example:
#DefineFunction PrintGraphic(File)
 ; This can be used to Print: HTML files or
 ; Graphics files (i.e., BMP TIFF JPG JPEG GIF)
 ; Requires Windows 2000 or later.
 if WinVersion(1) != 5
 Message("Error","This function is not supported on this

Windows platform")
 return(0)
 endif
 objBrowser = ObjectOpen("InternetExplorer.Application")
 objBrowser.addressbar = @false
 objBrowser.statusbar = @false
 objBrowser.menubar = @false
 objBrowser.toolbar = @false
 objBrowser.visible = @false
 objBrowser.navigate(file)
 While @TRUE
 If objBrowser.ReadyState == 4 then Break
 TimeDelay(1)
 EndWhile
 objBrowserDoc = objBrowser.Document
 objAll = objBrowserdoc.all
 OLECMDID_PRINT = 6
 OLECMDEXECOPT_DONTPROMPTUSER = 2
 PRINT_DONTBOTHERUSER = 1
 PRINT_WAITFORCOMPLETION = 2
 pvaIn =

ObjectType("I2",PRINT_WAITFORCOMPLETION|PRINT_DONTBOTHERUSER)
 pvaOut = ObjectType("NULL","")

objBrowser.ExecWB(OLECMDID_PRINT,OLECMDEXECOPT_DONTPROMPTUSER,pva
In, pvaOut)

 ;Give the browser enough time to print before closing the object
 TimeDelay(1)
 objBrowserDoc = ""
 objAll = ""
 objBrowser = ""

ObjectTypeGet

 491

 Return(1)
#EndFunction

file = "c:\temp\test.jpg"
If FileExist(file)then PrintGraphic(File)
else Message("Error","Unable to locate file. Check file path.")

See Also:
COM, ObjectOpen, ObjectClose, ObjectTypeGet, BinaryAllocArray

ObjectTypeGet
Gets the COM/OLE variant type of a WIL variable.

Syntax:
ObjectTypeGet(object-reference)

Parameters:
(r) object-reference variable containing an object reference.

Returns:
(s) COM/OLE variant-type or a blank string (""). This function

will return a blank string ("") if the variable passed is a non
variant type.

"variant-type" can be one of the following:

Variant Type Meaning
EMPTY No data, the size of the value is zero.
NULL This is like a pointer to NULL.
I1 1-byte signed integer.
UI1 1-byte unsigned integer.
I2 Two bytes representing a 2-byte signed integer

value.
UI2 2-byte unsigned integer.
I4 4-byte signed integer value.
INT 4-byte signed integer value (equivalent to VT_I4).
UI4 4-byte unsigned integer.
UINT 4-byte unsigned integer (equivalent to VT_UI4).
I8 8-byte signed integer.
UI8 8-byte unsigned integer.
R4 32-bit IEEE floating point value.
R8 64-bit IEEE floating point value.
DECIMAL A decimal value, specified as a string in the form

"#DECIMAL:value".

ObjectTypeGet

492

CY A currency value, specified as a string in the form
"#CURRENCY:value".

DATE A date/time value, specified as a string in Ymd or
YmdHms format.

BSTR A string.
BOOL A Boolean (True/False) value.
ERROR A DWORD containing a status code.
FILETIME 64-bit FILETIME structure as defined by Win32.

It is recommended that all times be stored in
Universal Coordinate Time (UTC).

LPSTR Pointer to a null-terminated ANSI string in the
system default code page.

LPWSTR Pointer to a null-terminated Unicode string in the
user's default locale.

CLSID Pointer to a class identifier (CLSID) (or other
globally unique identifier (GUID)).

CF Pointer to a CLIPDATA structure.
BLOB DWORD count of bytes, followed by that many

bytes of data. The byte count does not include the
four bytes for the length of the count itself; an
empty blob member would have a count of zero,
followed by zero bytes. This is similar to the value
VT_BSTR but does not guarantee a null byte at
the end of the data.

BSTR_BLOB Reserved for system use.
BLOBOBJECT A blob member containing a serialized object in

the same representation that would appear in
VT_STREAMED_OBJECT. That is, a DWORD
byte count (where the byte count does not include
the size of itself) which is in the format of a class
identifier followed by initialization data for that
class.
The only significant difference between
VT_BLOB_OBJECT and
VT_STREAMED_OBJECT is that the former
does not have the system-level storage overhead
that the latter would have, and is therefore more
suitable for scenarios involving numbers of small
objects.

STREAM Pointer to an IStream interface, representing a
stream which is a sibling to the "Contents" stream.

STREAMED_OBJECT As in VT_STREAM, but indicates that the stream
contains a serialized object, which is a CLSID

ObjectTypeGet

 493

followed by initialization data for the class. The
stream is a sibling to the "Contents" stream that
contains the property set.

STORAGE Pointer to an IStorageinterface, representing a
storage object that is a sibling to the "Contents"
stream.

STORED_OBJECT As in VT_STORAGE, but indicates that the
designated IStoragecontains a loadable object.

VECTOR If the type indicator is combined with
VT_VECTOR by using an OR operator, the value
is one of the counted array values. This creates a
DWORD count of elements, followed by a pointer
to the specified repetitions of the value.
For example, a type indicator of
VT_LPSTR|VT_VECTOR has a DWORD
element count, followed by a pointer to an array
of LPSTR elements.
VT_VECTOR can be combined by an OR
operator with the following types: VT_I1,
VT_UI1, VT_I2, VT_UI2, VT_BOOL, VT_I4,
VT_UI4, VT_R4, VT_R8, VT_ERROR, VT_I8,
VT_UI8, VT_CY, VT_DATE, VT_FILETIME,
VT_CLSID, VT_CF, VT_BSTR, VT_LPSTR,
VT_LPWSTR, and VT_VARIANT.

ARRAY If the type indicator is combined with
VT_ARRAY by an OR operator, the value is a
pointer to a SAFEARRAY. VT_ARRAY can use
the OR with the following data types: VT_I1,
VT_UI1, VT_I2, VT_UI2, VT_I4, VT_UI4,
VT_INT, VT_UINT, VT_R4, VT_R8,
VT_BOOL, VT_DECIMAL, VT_ERROR,
VT_CY, VT_DATE, and VT_BSTR.
VT_ARRAY cannot use OR with VT_VECTOR.

BYREF If the type indicator is combined with
VT_BYREF by an OR operator, the value is a
reference. Reference types are interpreted as a
reference to data.
VT_BYREF can use OR with the following types:
VT_I1, VT_UI1, VT_I2, VT_UI2, VT_I4,
VT_UI4, VT_INT, VT_UINT, VT_R4, VT_R8,
VT_BOOL, VT_DECIMAL, VT_ERROR,
VT_CY, VT_DATE, VT_BSTR, VT_ARRAY,
and VT_VARIANT.

VARIANT A DWORD type indicator followed by the
corresponding value. VT_VARIANT can be used

ObjectTypeGet

494

only with VT_VECTOR or VT_BYREF.
DISPATCH A pointer to an object was specified. This object is

known only to implement IDispatch.
UNKNOWN A pointer to an object that implements the

IUnknown interface.
VOID VOID.
HRESULT Standard return type.
SAFEARRAY VT_ARRAY in VARIANT.
CARRAY C-style array.
USERDEFINED User-defined type.
RECORD User-defined type.
RESERVED

This function returns the "variant-type" string for the specified variable name, or "" if
it does not have a variant type.

Important: Note that some of these types do not work for Automation (IDispatch)
method parameters and property values. They are included for completeness.
Theoretically, WinBatch will support any variant data type as long as you don't try to
pass it to WinBatch functions or use it in non-COM expressions. Of course we
support all the variant types that can be converted to standard WIL types in any
WinBatch expression or sub expression or function call.

Example:
objLocator = ObjectCreate("WbemScripting.SWbemLocator")
objService = objLocator.ConnectServer(".","root/cimv2","","")
objSecurity = objService.Security_
objSecurity.ImpersonationLevel = 3
class = "Win32_BIOS"
; query instances
query = "SELECT * FROM Win32_BIOS WHERE Name = 'Default System BIOS'
AND SoftwareElementID = 'Default System BIOS' AND
SoftwareElementState = '3' AND TargetOperatingSystem = '0' AND
Version = 'DELL - 6'"
colInstances = objService.ExecQuery(query)
; loop once for each instance
ForEach objInstance in colInstances
 ;Check if Object is EMPTY
 type = ObjectTypeGet(objInstance)
 if type=="EMPTY" then break
 ; obtain properti
 Message("Manufacturer",objInstance.Manufacturer)
Next
; close object handles
colInstances = ""
objSecurity = ""
objService = ""
objLocator = ""

Pause

 495

See Also:
COM, ObjectOpen, ObjectClose, ObjectType, BinaryAllocArray

ParseData
Parses the passed string.

Syntax:
ParseData(string)

Parameters:
(s) string string to be parsed.

Returns:
(i) number of parameters in string.

This function breaks a string constant or string variable into new sub-string variables
named param1, param2, etc. Blank spaces in the original string are used as
delimiters to create the new variables.

Param0 is the count of how many sub-strings are found in "string".

Example:
data = "Alpha Bravo Charlie Delta"
ParseData(data)
reverse = StrCat(param4," ",param3," ",param2," ",param1)
Message(data,reverse)

See Also:
ItemExtract, StrSub

Pause
Provides a message to user. User may cancel processing.

Syntax:
Pause(title,text)

Parameters:
(s) title title of pause box.
(s) text text of the message to be displayed.

Returns:
(i) @TRUE.

This function displays a message to the user with an exclamation point icon. The
user may respond by selecting the OK button, or may cancel the processing by
selecting Cancel.

PipeClientOpen

496

The Pause function is similar to the Message function, except for the addition of the
Cancel button and icon.

Example:
Pause("Change Disks", "Insert new disk into Drive F:")

which produces:

See Also:
Display, Exit, Message, Terminate

PipeClientClose
Closes a named pipe connection.

Syntax:
PipeClientClose(pipe-handle)

Parameters:
(i) pipe-handle pipe handle returned by PipeClientOpen.

Returns:
(i) returns @TRUE.

Example:
See PipeClientOpen Example

See Also:
PipeClientOpen, PipeClientSendRecvData, PipeInfo, PipeServerClose,
PipeServerCreate, PipeServerRead, PipeServerWrite

PipeClientOpen
Connects to a named pipe.

PipeClientOpen

 497

Syntax:
PipeClientOpen(pipe-name,timeout)

Parameters:
(s) pipe-name specifies the name of a pipe, in one of these forms:

\\ServerName\pipe\PipeName or \\.\pipe\PipeName
(i) timeout specifies the timeout period in seconds, or -1 for no timeout.

Returns:
(i/s) returns a pipe handle on success, or "*TIMER*".

Example:
;------------
; CLIENT.WBT
;------------
server = "myserver" ; Or "." for the local machine
pipename = "fluggle"
pipepath = StrCat("\\",server,"\pipe\",pipename)
querydata = "GET_TIME"
timeout = -1
IntControl(12,5,0,0,0);terminate quietly
notice = StrCat(@CRLF,@CRLF,"[Press CTRL+BREAK to exit script]")

BoxOpen("Time Client","Initializing connection to server...")
While @TRUE
 pipehandle = PipeClientOpen(pipepath,timeout)
 if pipehandle=="*ERROR*" || pipehandle=="*TIMER*" then continue ;
try again
 data=PipeClientSendRecvData(pipehandle, querydata,timeout)
 BoxText(StrCat("Data sent from server = ", data, notice))
 PipeClientClose(pipehandle)
Endwhile
Message("Client","Exited")
Exit

;------------
; SERVER.WBT
;------------
pipename="\\.\pipe\fluggle"
timeout = -1
IntControl(12,5,0,0,0);terminate quietly
notice = StrCat(@CRLF,@CRLF,"[Press CTRL+BREAK to exit script]")
BoxOpen("Time Server","Initializing - Awaiting connect from Client")
While @TRUE ; General Server loop
 pipehandle = PipeServerCreate(pipename,timeout)
 if pipehandle=="*ERROR*" || pipehandle=="*TIMER*" then continue
 readinfo = PipeServerRead(pipehandle, timeout)
 if readinfo=="*ERROR*" || readinfo=="*TIMER*"
 PipeServerClose(pipehandle,0)
 continue ; try again
 endif
 if readinfo == "GET_TIME"

PipeInfo

498

 response= TimeYmdHms()
 else
 response = "ERROR: UNKNOWN REQUEST"
 endif
 rslt=PipeServerWrite(pipehandle,response)
 BoxText(StrCat("Data sent to client = ",response, notice))
 PipeServerClose(pipehandle,timeout)
Endwhile
Message("Server","Exited")
Exit

See Also:
PipeClientClose, PipeClientSendRecvData, PipeInfo, PipeServerClose,
PipeServerCreate, PipeServerRead, PipeServerWrite

PipeClientSendRecvData
Writes a message to a named pipe and then reads a message back.

Syntax:
PipeClientSendRecvData(pipe-handle,data,read-timeout)

Parameters:
(i) pipe-handle pipe handle returned by PipeClientOpen.
(s) data message/data to send to named pipe.
(i) read-timeout specifies the timeout period in seconds, or -1 for no timeout.

Returns:
(s) Returns a message string on success; "*ERROR*" on error;

"*TIMER*" on timeout.

Example:
See PipeClientOpen Example

See Also:
PipeClientClose, PipeClientOpen, PipeInfo, PipeServerClose, PipeServerCreate,
PipeServerRead, PipeServerWrite

PipeInfo
Returns information about a pipe or pipe operation.

Syntax:
PipeInfo(request,pipe-handle)

Parameters:
(i) request see below.
(i) pipe-handle pipe handle returned by PipeClientOpen.

PipeServerCreate

 499

Returns:
(i) depends on request.

Request Returns

0 Error code for last unsuccessful pipe function ("pipe-handle" is ignored)

Example:
See PipeClientOpen Example

See Also:
PipeClientClose, PipeClientOpen, PipeClientSendRecvData, PipeServerClose,
PipeServerCreate, PipeServerRead, PipeServerWrite

PipeServerClose
Closes a named pipe instance.

Syntax:
PipeServerClose(pipe-handle,timeout)

Parameters:
(i) pipe-handle pipe handle returned by PipeServerCreate.
(i) timeout specifies the timeout period in seconds, or -1 for no timeout.

Returns:
(i/s) returns @TRUE on success, or "*TIMER*" on timeout.

If there is a client connected to the pipe, the function will wait "timeout" seconds for
the client to close its end of the pipe.

Example:
See PipeClientOpen Example

See Also:
PipeClientClose, PipeClientOpen, PipeClientSendRecvData, PipeInfo,
PipeServerCreate, PipeServerRead, PipeServerWrite

PipeServerCreate
Creates an instance of a named pipe and waits for a client to connect. (Windows NT
family only)

Syntax:
PipeServerCreate(pipe-name,timeout)

PipeServerWrite

500

Parameters:
(s) pipe-name specifies the name of a pipe, in the form:

\\.\pipe\PipeName
(i) timeout specifies the timeout period in seconds that it will wait for a

client to connect., or -1 for no timeout.

Returns:
(i/s) a pipe handle on success; "*TIMER*" on timeout.

A maximum of 100 instances of a pipe can be created.

Example:
See PipeClientOpen Example

See Also:
PipeClientClose, PipeClientOpen8, PipeClientSendRecvData, PipeInfo,
PipeServerClose, PipeServerRead, PipeServerWrite

PipeServerRead
Reads a message from a named pipe.

Syntax:
PipeServerRead(pipe-handle,timeout)

Parameters:
(i) pipe-handle pipe handle returned by PipeServerCreate.
(i) timeout specifies the timeout period in seconds, or -1 for no timeout.

Returns:
(s) a message string on success; "*ERROR*" upon error;

"*TIMER*" on timeout.

Example:
See PipeClientOpen Example

See Also:
PipeClientClose, PipeClientOpen, PipeClientSendRecvData, PipeInfo,
PipeServerClose, PipeServerCreate, PipeServerWrite

PipeServerWrite
Writes a message to a named pipe.

Syntax:
PipeServerWrite(pipe-handle,data)

Parameters:
(i) pipe-handle pipe handle returned by PipeServerCreate.

PlayMedia

 501

(s) data message/data to send to named pipe.

Returns:
(i/s) returns @TRUE on success; "*ERROR*" upon error.

Example:
See PipeClientOpen Example

See Also:
PipeClientClose, PipeClientOpen, PipeClientSendRecvData, PipeInfo,
PipeServerClose, PipeServerCreate, PipeServerRead

PlayMedia
Controls multimedia devices.

Syntax:
PlayMedia(mci-string)

Parameters:
(s) mci-string string to be sent to the multimedia device.

Returns:
(s) response from the device.

If the appropriate Windows multimedia extensions are present, this function can
control multimedia devices. Valid command strings depend on the multimedia
devices and drivers installed. The basic Windows multimedia package has a
waveform device to play and record waveforms, and a sequencer device to play
MIDI files. Refer to the appropriate documentation for information on command
strings.

Many multimedia devices accept the WAIT or NOTIFY parameters as part of the
command string:

WAIT Causes the system to stop processing input until the
requested operation is complete. You cannot switch tasks
when WAIT is specified.

WAIT NOTIFY Same as WAIT

NOTIFY Causes the WIL program to suspend execution until the
requested operation completes. You can perform other
tasks and switch between tasks when NOTIFY is
specified.

If neither WAIT nor NOTIFY is specified, the multimedia operation is started and
control returns immediately to the WIL program.

PlayMidi

502

In general, if you simply want the WIL program to wait until the multimedia
operation is complete, use the NOTIFY keyword. If you want the system to hang
until the operation is complete, use WAIT. If you just want to start a multimedia
operation and have the program continue processing, don't use either keyword.

The return value from PlayMedia is whatever string the driver returns. This will
depend on the particular driver, as well as on the type of operation performed.

Example:
; Plays a music CD on a CDAudio drive, from start to finish
stat = PlayMedia("status cdaudio mode")
answer = 1
If stat == "playing"
 answer = AskYesNo("CD Audio", "CD is Playing. Stop?")
 If answer == 0 Then Exit
endif

PlayMedia("open cdaudio shareable alias donna notify")
PlayMedia("set donna time format tmsf")
PlayMedia("play donna from 1")
PlayMedia("close donna")
Exit

:cancel
PlayMedia("set cdaudio door open")

See Also:
Beep, PlayMidi, PlayWaveForm, Sounds

PlayMidi
Plays a MID or RMI sound file.

Syntax:
PlayMidi(filename,mode)

Parameters:
(s) filename name of the MID or RMI sound file.
(i) mode play mode (see below).

Returns:
(i) @TRUE if successful; @FALSE if unsuccessful.

If Windows multimedia sound extensions are present, and MIDI-compatible
hardware is installed, this function will play a MID or RMI sound file. If "filename"
is not in the current directory and a directory is not specified, the path will be
searched to find the file.

PlayWaveForm

 503

If "mode" is set to 0, the WIL program will wait for the sound file to complete before
continuing. If "mode" is set to 1, it will start playing the sound file and continue
immediately.

Example:
PlayMidi("C:\windows\media\canyon.mid", 1)
Message("PlayMidi","Midi Played")

See Also:
Beep, PlayMedia, PlayWaveForm, Sounds

PlayWaveForm
Plays a WAV sound file.

Syntax:
PlayWaveForm(filename,mode)

Parameters:
(s) filename name of the WAV sound file.
(i) mode play mode (see below).

Returns:
(i) @TRUE if successful; @FALSE if unsuccessful.

If Windows multimedia sound extensions are present, and waveform-compatible
hardware is installed, this function will play a WAV sound file. If "filename" is not
in the current directory and a directory is not specified, the path will be searched to
find the file. If "filename" is not found, the WAV file associated with the
"SystemDefault" keyword is played, (unless the "NoDefault" setting is on).

Instead of specifying an actual filename, you may specify a keyword name from the
[Sound] section of the WIN.INI file (e.g., "SystemStart"), or equivalent Registry key,
in which case the WAV file associated with that keyword name will be played.

"Mode" is a bitmask, composed of the following bits, combine using the binary OR
operator.

Mode Meaning
0 Wait for the sound to end before continuing.
1 Don't wait for the sound to end. Start the sound and immediately

process more statements.
2 If sound file not found, do not play a default sound
9 Continue playing the sound forever, or until a PlayWaveForm(" ", 0)

statement is executed
16 If another sound is already playing, do not interrupt it. Just ignore this

PlayWaveForm request.
The command PlayWaveForm(" ", 0) can be used at any time to stop sound.

PtrGlobal

504

Examples:
PlayWaveForm("tada.wav", 0)
PlayWaveForm("SystemDefault", 1 | 16)
Message("PlayWaveForm"," Done.")

See Also:
Beep, PlayMedia, PlayMidi, Sounds

Print
Instructs the application responsible for a file to print the file on the default printer.

Syntax:
Print(data file,directory,display mode,reserved)

Parameters:
(s) data file the name of the file to print.
(s) directory current working directory (if applicable).
(i) display mode @NORMAL, @ICON, @ZOOMED, @HIDDEN.
(i) reserved reserved.

Returns:
(i) @TRUE if the function completed; @FALSE if an error

occurred.

Instructs the application responsible for a file to print the file on the default printer.
The Windows ShellExecute API is used. It examines the extension of the data file,
looks the extension up in the Windows registry to determine the owning application,
starts the owning application, and instructs it, also according to data specified in the
registry, to print the data file. Most applications will send the printout to the default
printer, however the exact action taken by the application is under the application’s
own control.

Applications that support this command or their setup programs will generally make
the necessary modifications to the Windows registry to allow this function to
perform successfully.

Example:
FileCopy("C:\config.sys", "xxx.txt", 0)
a=Print("xxx.txt", DirGet(), @NORMAL, 0)
exit

See Also:
RunShell

PtrGlobal
Retrieves a "pointer" to a global variable.

PtrGlobalDefine

 505

Syntax:
PtrGlobal(variable-name)

Parameters:
(s) variable-name specifies a variable name.

Returns:
(s) pointer a pointer string.

"variable-name" must have been previously been marked as global using
PtrGlobalDefine.

Example:
#DefineFunction CheckGlobalValue()
 Ptr_Global_A=PtrGlobal(Global_A)
 Ptr_Global_B=PtrGlobal(Global_B)
 if *Ptr_Global_A != "Potatoes"
 Message("Error","Global_A is not the expected value")
 endif
 *Ptr_Global_B = 1234
#EndFunction

PtrGlobalDefine(Global_A)
PtrGlobalDefine(Global_B)

Global_A = "Potatoes"
retvalue=CheckGlobalValue()
If Global_B != 1234
 Message("Error","Global_B is not the expected value")
endif

See Also:
PtrGlobalDefine, PtrPersistent

PtrGlobalDefine
Creates a "pointer" to a global variable.

Syntax:
PtrGlobalDefine(variable-name)

Parameters:
(s) variable-name specifies a variable name.

Returns:
(s) a pointer string.

This function can only be called from the main script, not from a UDF.

If "variable-name" does not already exist, it will be created.

PtrGlobalTest

506

Example:
#DefineFunction CheckGlobalValue()
 Ptr_Global_A=PtrGlobal(Global_A)
 Ptr_Global_B=PtrGlobal(Global_B)
 if *Ptr_Global_A != "Potatoes"
 Message("Error","Global_A is not the expected value")
 endif
 *Ptr_Global_B = 1234
#EndFunction

PtrGlobalDefine(Global_A)
PtrGlobalDefine(Global_B)

Global_A = "Potatoes"
retvalue=CheckGlobalValue()
If Global_B != 1234
 Message("Error","Global_B is not the expected value")
endif

See Also:
PtrGlobal, PtrPersistent

PtrGlobalTest
Tests whether a variable has been marked as being globally accessible.

Syntax:
PtrGlobalTest(variable-name)

Parameters:
(s) variable-name specifies a variable name.

Returns:
(i) @TRUE globally accessible; @FALSE if not.

Example:
#DefineFunction CheckGlobalValue()
 Ptr_Global_A=PtrGlobal(Global_A)
 *Ptr_Global_A = 1234
#EndFunction
PtrGlobalDefine(Global_A)
ret = PtrGlobalTest(Global_A)
If ret == @TRUE
 Message("PtrGlobalTest","Global_A is globally accessible")
EndIf

See Also:
PtrGlobal, PtrGlobalDefine, PtrPersistent

PtrPersistent

 507

PtrPersistent
Creates a "pointer" to a persistent variable.

Syntax:
PtrPersistent(variable-name,value)

Parameters:
(s) variable-name specifies a variable name which CANNOT be longer than

25 characters.
(s/i) value specifies a value which will be assigned to "variable-name"

if the variable does not already exist.

Returns:
(s) a pointer string.

This function marks a variable as persistent. If called from a UDF, the variable will
retain its value after the UDF returns. If variable does not already exist, it will be
created. If it already exists, its value will not be changed.

A "persistent" variable is defined and used in a single UDF. But unlike other UDF
variables, it "stays around". Kind of like a private global variable that no other UDF's
can see. For example, if a UDF wants to save away some information that it needs, it
can use a persistent variable. The next time the UDF is called, its persistnt variable is
still there, with what ever value was left over from the previous call to it.'

Example:
#DefineFunction IncMyCounter(flag)
 ; flag = 0 will report on current value of counter
 ; flag = 1 will increment counter first
 Ptr_MyCounter = PtrPersistent(MyCounter,0)
 if flag==1 ; report on number of calls
 *Ptr_MyCounter = *Ptr_MyCounter + 1
 endif
 return *Ptr_Mycounter
#EndFunction

r=Random(100)
for xx = 1 to r
 IncMyCounter(1)
next

cnt=IncMyCounter(0)
Message("Counter Value is",cnt)

See Also:
PtrGlobal, PtrGlobalDefine

Registration Database Operations

508

Random
Computes a pseudo-random number.

Syntax:
Random(max)

Parameters:
(i) max largest desired integer number.

Returns:
(i) difficult to predict, positive number.

This function will return a random integer between 0 and max.

Example:
a = Random(79)
Message("Random number between 0 and 79", a)

See Also:
IntControl 81, Average, Max, Min

Registration Database Operations
In the early days of Windows, there was a single INI file, WIN.INI. As Windows
advanced, the WIN.INI file became cluttered, and it was then subdivided into
SYSTEM.INI, WIN.INI and a large number of application specific INI files.

With the advent of COM/OLE, Windows NT, and other advancements in operating
system technology, the simple INI files could not hold or organize the new and vast
amounts of information required to run a modern operating system. For this reason, a
new data storage structure was developed. Sometimes called the Registry or the
Registration Database, this new file was designed to be able to hold and organize
large amounts of seemingly random information.

The Registration Database is organized in a tree structure, much like a file system.
At every level "keys" to the data exist. The keys are analogous to the sub-directories
in a file system. A set of keys to a data item look very much like a path to a filename.

In Windows, the Registration Database may be viewed and altered with the
"RegEdit" utility. It requires a "/v" parameter, as in "regedit.exe /v", to enable the
edit mode of the utility. There exists the "RegEdt32" utility in Windows NT+ that
allows access to the Registration Database.

CAUTION: The reason that these utilities are not made easily accessible is that it is
trivially easy to make a modification to the database that will completely ruin a
Windows installation, and may require a complete re-install of Windows to get the
system running again. It is best to study the database and understand what is going

RegApp

 509

on, instead of perhaps using a somewhat common "trial and error" method of making
changes.

There are two ways to query and set information in the Registration Database. The
easy way is to simply base all operations on an always open root key. Using just the
RegQueryValue and RegSetValue functions you can alter all data associated with
pre-defined keys.

The other more complicated and more flexible method is to open or create a desired
key, using the RegOpenKey or RegCreateKey functions, modify the database with
other registration functions, passing it a handle to the key, and then finally close the
database with the RegCloseKey function. Most of the registration functions accept
both a handle to a key and a subkey string which further defines a lower key.
Oftentimes the subkey string is simply set to null (empty quotes), and the handle
points directly to the destination. At other times, one of the pre-defined roots of the
database is passed as the handle and the subkey string points all the way down to the
desired data item.

Pre-defined keys are provided. Windows provides several keys, as shown in the table
below:

32 Bit Windows handles to "always open" keys

@REGMACHINE Root of the machine section of the Registration Database.
HKEY_LOCAL_MACHINE

@REGCLASSES Shortcut to the classes sub-section.
HKEY_CLASSES_ROOT

@REGUSERS Root of the user section of the Registration Database.
HKEY_USERS

@REGCURRENT Shortcut to the current user’s sub-section.
HKEY_CURRENT_USER

Note: Named data entries as found in Windows are specified by enclosing the "data
item name" in square brackets at the end of the key string. For Example:
RegSetValue(@REGMACHINE,"SOFTWARE\Wilson
WindowWare\Settings\WWWBATCH\MAIN[SOUNDS]",1)

Use [] to refer a '(Default)' data item under a specified key.

For Example:
;this example gets the DEFAULT value under a specific key
ret=RegQueryValue(@REGCLASSES,"txtfile[]")
message("Value of default key",ret)

RegApp
Creates registry entries for a program under "App Paths".

RegCloseKey

510

Syntax:
RegApp(program-name,path)

Parameters:
(s) program-name the name of an executable program (EXE), optionally

containing a path.
(s) path optional desired "PATH" setting for the specified program.

Returns:
(i) @TRUE entry was created; @FALSE operation failed.

This function creates (or updates) a sub-key in the registration database for the
specified program, of the form PROGNAME.EXE, under the key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\App
Paths\

If "program-name" does not contain a path, the function will search for it on the path.

The function creates a "(Default)" value for the key, containing the full path to the
specified program.

If the "path" parameter is not a blank string (""), the function also creates a "Path"
value for the key. This should contain one or more directories (separated by semi-
colons) which you want to be prepended to the existing "PATH" environment
variable when the program is run.

Windows Vista or newer: This function may require an Administrator level
account, because it attempts to write to the HKEY_LOCAL_MACHINE registry
key.

Example:
residence="c:\msoffice\excel.exe"
path="c:\msoffice\excel;c:\msoffice\winword"
RegApp(residence, path)
Message("Excel.EXE","Registered at %residence% and use path %path%")

See Also:
InstallFile, RegOpenKey, RegCreateKey, RegQueryValue, RegQueryKey and the
section on Registration Database Operations (pg. 508)

RegCloseKey
Closes a key to the Registration Database.

Syntax:
RegCloseKey(handle)

Parameters:
(i) handle handle to a registration database key.

RegConnect

 511

Returns:
(i) @TRUE database was closed; @FALSE close failed.

The RegCloseKey function closes a key to the Registration Database. The key is
opened or created with the RegOpenKey or the RegCreateKey functions.
Registration Database changes made using a key are saved when the key is closed.

Example:
key=RegOpenkey(@RegClasses, "txtfile")
b=RegQueryValue(key, "shell\open\command")
RegCloseKey(key)
Message("Default textfile editor is", b)

See Also:
RegOpenKey, RegCreateKey, RegSetValue, RegQueryValue and the section on
Registration Database Operations (pg. 508)

RegConnect
Connects to a predefined registry handle on another computer.

Syntax:
RegConnect(computer-name,handle[,remoteOSflag])

Parameters:
(s) computer-name the name of the computer in the form of "\\computername".
(i) handle either @REGMACHINE OR @REGUSERS
(s) remoteOSflag [optional] indicate the processor architecture

used by the remote operating system.

Returns:
(s) a key handle to the specified handle on the remote

computer.

remoteOSflag

Optional parameter that indicates the processor architecture or 'bitness' used by the
remote operating system. Set the optional parameter to the string "RemoteOS32", if
the remote computer is running a 32-bit version of Windows and the computer
running the script is using a 64-bit version of Windows. Set the optional parameter to
"RemoteOS64", if the remote computer is running a 64-bit version of Windows and
the computer running the script is using 32-bit version of Windows. If the remote
computer and the computer running the script are using the same bitness, do not
supply a value for this parameter.

Note: When a handle returned by RegConnect is no longer needed, it should be
closed by calling RegCloseKey.

May need to call wntCancelCon, if explicitly connected to the IPC$ share (i.e., via
wntAddDrive).

RegCreateKey

512

Windows Vista or newer: This function may require an Administrator level
account.

Example:
Fred=RegConnect("\\FRED", @REGMACHINE, "")
Iver=RegQueryValue(Fred, "SOFTWARE\Microsoft\Internet
Explorer[Iver]")
RegCloseKey(Fred)
Message("Internet Explorer Version Installed on \\Fred.", Iver)

See Also:
RegCreateKey, RegCloseKey, RegDeleteKey, RegSetValue, RegQueryValue,
RegQueryKey and the section on Registration Database Operations (pg. 508)

RegCreateKey
Returns a handle to a new registration database key.

Syntax:
RegCreateKey(handle,subkey-string[,view-flag])

Parameters:
(i) handle handle to a registration database key.
(s) subkey-string a path from the key provided to the desired key.
(i) view-flag [optional] controls which registry view the function uses

when accessing the Windows registry.
0 - view indicated by the last call to the RegOpenFlags.
32 - use the 32-bit registry view.
64 - use the 64-bit registry view.

Returns:
(i) a handle to the new key.

The RegCreateKey function will create and open a desired key into the Registration
Database. If the key already exists, RegCreateKey will open it. When using
RegCreateKey you must pass a pre-existing, open key to create a new key. A pre-
defined key may be used.

Example:
; Associate DIZ files with the default textfile editor
key=RegCreatekey(@REGCLASSES, ".diz")
RegSetValue(key, "", "txtfile")
RegClosekey(key)
Message("RegCreatekey","*.DIZ files now associated with your text
editor")

See Also:
RegOpenKey, RegCloseKey, RegDeleteKey, RegSetValue, RegQueryValue,
RegQueryKey and the section on Registration Database Operations (pg. 508)

RegDelValue

 513

RegDeleteKey
Deletes a key and data items associated with the key.

Syntax:
RegDeleteKey(handle,subkey-string[,view-flag])

Parameters:
(i) handle an open registration database key (see below).
(s) subkey-string a path from the key provided to the desired key.
(i) view-flag [optional] controls which registry view the function uses

when accessing the Windows registry.
0 - view indicated by the last call to the RegOpenFlags.
32 - use the 32-bit registry view.
64 - use the 64-bit registry view.

Returns:
(i) @TRUE key was deleted; @FALSE key was not found.

The RegDeleteKey function will delete a pre-existing key from the Registration
Database. If the key does not exist, RegDeleteKey will fail. When using
RegDeleteKey you must pass a pre-existing, open key to access the desired key. A
pre-defined key may be used.

Example:
; Delete default operation for *.DIZ files
; from the registration database
ErrorMode(@off)
RegDeleteKey(@REGCLASSES, ".diz")
ErrorMode(@cancel)
Message("Regdeletekey","*.DIZ files no longer associated with text
editor")

See Also:
RegOpenKey, RegCreateKey, RegCloseKey, RegDelValue and the section on
Registration Database Operations (pg. 508)

RegDelValue
Deletes a named value data item for the specified subkey from the registry.

Syntax:
RegDelValue(handle,subkey-string[,view-flag])

Parameters:
(i) handle handle to a registration database key.
(s) subkey-string a path from the key provided to the desired key, including

the "data item name" in square brackets at the end of the key
string.

RegEntryType

514

(i) view-flag [optional] controls which registry view the function uses
when accessing the Windows registry.
0 - view indicated by the last call to the RegOpenFlags.
32 - use the 32-bit registry view.
64 - use the 64-bit registry view.

Returns:
(i) @TRUE data item was deleted; @FALSE data was not

found.

The "data item name" in the Subkey-string must be enclosed in square brackets (see
RegSetValue). Use "[]" for the data item name to delete the "default" value.

Example:
;To turn Sounds ON in the case Sounds was disabled.
ErrorMode(@off)
RegDelValue(@REGMACHINE, "SOFTWARE\Wilson
WindowWare\Settings\WWWBATCH\MAIN[SOUNDS]")
ErrorMode(@cancel)
Message("Sounds", "Sound Settings - Sounds is on.")

See Also:
RegOpenKey, RegCreateKey, RegCloseKey, RegDeleteKey, RegQueryValue,
RegSetValue and the section on Registration Database Operations (pg. 508)

RegEntryType
Returns the type of data for the specified subkey.

Syntax:
RegEntryType(handle,subkey-string[,view-flag])

Parameters:
(i) handle an open registration database key. (see below).
(s) subkey-string a path from the key provided to the desired key.
(i) view-flag [optional] controls which registry view the function uses

when accessing the Windows registry.
0 - view indicated by the last call to the RegOpenFlags.
32 - use the 32-bit registry view.
64 - use the 64-bit registry view.

Returns:
(s) data type of specified subkey. (see below).

The return value will be one of the following:

Value DataType Description
0 (REG_NONE) No value type
1 (REG_SZ) An ANSI string

RegEntryType

 515

2 (REG_EXPAND_SZ) ANSI string that
contains unexpanded
references to
environment variables
(for example,
%PATH%).

3 (REG_BINARY) Free form binary
4 (REG_DWORD) 32-bit number
5 (REG_DWORD_BIG_ENDIAN) 32-bit number, high

byte first
6 (REG_LINK) Symbolic Link

(Unicode)
7 (REG_MULTI_SZ) A delimited list of

ANSI strings.
8 (REG_RESOURCE_LIST) Resource list in the

resource map
9 (REG_FULL_RESOURCE_DESCRIPTOR) Resource list in the

hardware description
10 (REG_RESOURCE_REQUIREMENTS_LIST) Resource requirements
11 (REG_QWORD) 64-bit number

Example:
;This set of UDFs can clone or rename a registry key
;It is not blindingly fast, but should be ok for smaller trees.

;CopyRegValue - Copies one single value from one place to another
;CloneRegTree - copies one tree from one place to another
;RenameRegTree - Renames a tree.

;However, due to the fact that the registry API does not have
;a rename facility, the RenameRegTreeis implemented by first
;cloning the tree, then deleting the original tree.

;Keys are used by first obtaining a handle to one. One of the
;predefined handles (@REGMACHINE @REGCURRENT, etc) or a handle
;returned by one of the registry functions RegConnect, RegCreateKey
;or RegOpenKey may be used

;Each function needs a handle to a section in the registry
;database in addition to a string that consists of the subkey to
;an entry in the Registry database.

;For current versions of Windows, there are 4 handles: @REGMACHINE,
;@REGCLASSES, @REGUSRS, and @REGCURRENT. These are WIL constants
;for HKEY_LOCAL_MACHINE, HKEY_CLASSES_ROOT, HKEY_USERS, and

;HKEY_CURRENT_USER. When you obtain a registry subkey from
Microsoft's

RegEntryType

516

;registry viewer, regedit.exe (by using Copy Key Name from the right
;mouse menu in RegEdit.exe) it will look like this example:
;HKEY_LOCAL_MACHINE\SOFTWARE\myTest\Sub2\sub21\Sub211

;For use in the WIL registry functions, the above key must be
;divided into handle and subkey. The handle, @REGMACHINE, takes the
;place of the first item, 'HKEY_LOCAL_MACHINE\'. The subkey needed
;for the second parameter in the functions is,
;'SOFTWARE\myTest\Sub2\sub21\Sub211'.

;Note: it does not start with the '\' backslash character.
;
;Define the CopyRegValue UDF.
#DefineFunction CopyRegValue(fromHandle,fromSubkey,toHandle,toSubkey)
 ;Stop if value does not exist.
 Terminate(RegExistValue(fromHandle,fromSubkey)==0,"Reg value does
not exist",fromSubkey)
 ;Get the entry type
 type=RegEntryType(fromHandle,fromSubkey)
 ;Stop if type is not supported.
 Terminate(((type<1) || (type>4)) && type!=7, "Cannot handle reg
value",fromSubkey)
 ;Define a hopefully sufficiently obscure delimiter for the BIN
function
 delim=Num2Char(255)
 ;Get the value.
 value=RegQueryEx(fromHandle,fromSubkey,delim,type)
 ;Copy value to a new subkey.
 RegSetEx(toHandle,toSubkey,value,delim,type)
 Return ;Return nothing.
#endfunction

;Define the CloneRegTree UDF.
#DefineFunction CloneRegTree(fromHandle, fromSubkey, toHandle,
toSubkey)
 ;Stop if key does not exist.
 Terminate(RegExistKey(fromHandle,fromSubkey)==0,"Reg key does not
exist",fromSubkey)
 ;copy top default key
 ;Check value.
 if RegExistValue(fromhandle,fromsubkey)
 ;Get value.
 defval=RegQueryValue(fromHandle,fromSubkey)
 ;Set value of destination subkey.
 if defval!="" then RegSetValue(toHandle,toSubkey,defval)
 endif
 ;copy all values under key, if any
 items=RegQueryItem(fromHandle,fromSubkey)
 icount=ItemCount(items,@tab)
 for ii=1 to icount
 ;Assemble source subkey with value in brackets.
 thisitem=strcat(fromSubkey,'[',ItemExtract(ii,items,@tab),']')
 ;Assemble destination subkey with value in brackets.

RegEntryType

 517

 thatitem=strcat(toSubkey,'[',ItemExtract(ii,items,@tab),']')
 ;Copy the entry.
 CopyRegValue(fromHandle, thisitem, toHandle, thatitem)
 next

 ;Get list of subkeys
 ;Open source key with read access rights.
 tempkey=RegOpenKeyEX(fromHandle,fromSubkey,"READ",0,0)
 ;Get keys.
 keys=RegQueryKeys(tempkey)
 ;Close source key.
 RegCloseKey(tempkey)
 ;Process each subkey
 kcount=ItemCount(keys,@tab)

 for kk=1 to kcount
 thiskey=strcat(fromSubkey,"\",ItemExtract(kk,keys,@tab))
 thatkey=strcat(toSubkey,"\",ItemExtract(kk,keys,@tab))
 ;Use the CloneRegTree UDF to do the work.
 CloneRegTree(fromHandle,thiskey,toHandle,thatkey)
 next
#EndFunction

#DefineFunction RenameRegTree(fromHandle, fromSubkey, toHandle,
toSubkey)
;Set up UDF
 ;Use previous UDF to copy the source key to the destination key.
 CloneRegTree(fromHandle, fromSubkey, toHandle, toSubkey)
 ;Delete the source key.
 RegDeleteKey(fromHandle,fromSubkey)
#EndFunction

;Test code follows.
;Registry handle. In this case, both source and destination are the
same.
fromHandle = @REGCURRENT
toHandle = @REGCURRENT

;source subkey
fromSubkey = "Software\Wilson WindowWare"
;destination subkey
toSubkey = "Software\MyWilson WindowWare"

;copy the subkey
CloneRegTree(fromHandle , fromSubkey , toHandle , toSubkey)
Message("Progress" , "New key created.%@CRLF%%@CRLF%See this with
regedit.exe, %@CRLF%Be sure to refresh it with f5!")

fromSubkey = "Software\MyWilson WindowWare"
toSubkey = "Software\MyOtherWilson WindowWare"

;copy the subkey to a new named key, and delete the old key.
RenameRegTree(fromHandle , fromSubkey , toHandle , toSubkey)

RegExistValue

518

Message("Progress" , "New key copied and renamed.%@CRLF%Check this
with f5 in regedit.exe.")

See Also:
RegQueryEx, RegSetEx and the section on Registration Database Operations (pg.
508)

RegExistKey
Checks whether a registry key exists.

Syntax:
RegExistKey(handle,subkey-string[,view-flag])

Parameters:
(i) handle handle to an open registration database key.
(s) subkey-string a path from the key provided to the desired key.
(i) view-flag [optional] controls which registry view the function uses

when accessing the Windows registry.
0 - view indicated by the last call to the RegOpenFlags.
32 - use the 32-bit registry view.
64 - use the 64-bit registry view.

Returns:
(i) @TRUE key exists and is accessible (i.e., can be opened

with RegOpenKey); @FALSE doesn't exist or cannot be
opened.

Example:
key=RegExistkey(@RegClasses, "txtfile")
if key == 1
 who=RegQueryStr(@REGClasses,"txtfile\shell\open\command")
else
 message("Sorry","The specified key does not exist!")
 exit
endif
Display(3,"Default text file editor is", who)

See Also:
RegOpenKey and the section on Registration Database Operations (pg. 508)

RegExistValue
Checks whether a value for a registry key exists.

Syntax:
RegExistValue(handle,subkey-string[,view-flag])

RegLoadHive

 519

Parameters:
(i) handle an open registration database key.
(s) subkey-string a path from the key provided to the desired key, including

the "data item name" in square brackets at the end of the key
string.

(i) view-flag [optional] controls which registry view the function uses
when accessing the Windows registry.
0 - view indicated by the last call to the RegOpenFlags.
32 - use the 32-bit registry view.
64 - use the 64-bit registry view.

Returns:
(i) @TRUE value (data item) exists and is accessible

(i.e., can be read with RegQuery[..]); @FALSE doesn't
exist or cannot be read.

Example:
reg = RegExistValue(@REGMACHINE, "SOFTWARE\Wilson
WindowWare\WinBatch\CurrentVersion")
if reg == 0
 Message("RegExistValue","The value doesn't exist?")
 exit
endif
regkey = RegQueryValue(@REGMACHINE, "SOFTWARE\Wilson
WindowWare\WinBatch\CurrentVersion[]")
Message("WinBatch directory", regkey)

See Also:
RegQueryValue and the section on Registration Database Operations (pg. 508)

RegLoadHive
Loads a hive into a registry subkey.

Syntax:
RegLoadHive(handle,subkey,filename)

Parameters:
(i) handle either @REGUSERS or @REGMACHINE.
(s) subkey the name of the key to be created
(s) filename specifies the name of a hive file.

Returns:
(s) @TRUE.

This function creates a subkey under HKEY_USERS or
HKEY_LOCAL_MACHINE and stores registration information from the specified
file into that subkey. This registration information is in the form of a hive. A hive is a

RegOpenFlags

520

discrete body of keys, subkeys, and values that is rooted at the top of the registry
hierarchy.

Windows Vista or newer: This function may require an Administrator level
account, because it attempts to access to the HKEY_LOCAL_MACHINE registry
key.

Example:
RegLoadHive(@REGMACHINE, "WinWare", "winware")

See Also:
RegUnloadHive and the section on Registration Database Operations (pg. 508)

RegOpenFlags
Specifies the registry view of the various Reg[..] functions.

Syntax:
RegOpenFlags(flag)

Parameters:
(i) flag a flag which specifies which view of the registry

the various Reg[..] functions will see.

Returns:
(i) previous value.

This function lets you specify an alternate view of the registry for Reg[..] functions
which create, open, and delete registry keys, when running on (or accessing) a 64-bit
Windows platform.

Flags Meaning
0 32-bit view under Win32, 64-bit view under WOW64 (default)

32 32-bit view
64 64-bit view

Registry Redirection
To prevent 32-bit registry settings from overwriting the 64-bit registry settings,
computers that are running an x64-based version of Windows store the settings for
32-bit programs in a new branch in the registry. The registry redirection process
enables program installations and program configuration settings to access the
'correct' registry sub key without user intervention.

 32-bit programs and 64-bit programs that are running on an x64-based version of
Windows operate in different modes and use the following sections in the registry:

RegOpenKey

 521

• Native mode 64-bit programs run in Native mode and access keys and values
that are stored in the following registry sub key:
HKEY_LOCAL_MACHINE\Software

• 32-bit programs (like WinBatch) run in WOW64 mode and access keys and
values that are stored in the following registry sub key:
HKEY_LOCAL_MACHINE\Software\WOW6432node

2 simple rules to accessing the registry on 64-bit systems:

• NEVER directly access keys stored under WOW6432node.

• If you do want access something under WOW6432node, just set the registry
view to 32-bit using RegOpenFlags(32) and specify the key/value without using
'WOW6432node' in the registry path. (In other words use it 's regular 32-bit
key/value.)

You can launch the 32-bit version of Registry Editor on a 64-bit Windows platform
using the following commandline:
C:\Windows\syswow64\regedit.exe

Example:
;64-bit view
RegOpenFlags(64)

See Also:
RegOpenKeyEx, RegCreateKey, RegCloseKey, RegDeleteKey, RegSetValue,
RegQueryValue, RegQueryKey and the section on Registration Database Operations
(pg. 508)

RegOpenKey
Returns a handle to an existing registration database key.

Syntax:
RegOpenKey(handle,subkey-string[,view-flag])

Parameters:
(i) handle handle to a registration database key.
(s) subkey-string a path from the key provided to the desired key.
(i) view-flag [optional] controls which registry view the function uses

when accessing the Windows registry.
0 - view indicated by the last call to the RegOpenFlags.
32 - use the 32-bit registry view.
64 - use the 64-bit registry view.

Returns:
(i) a handle to the new key.

RegOpenKeyEx

522

The RegOpenKey function will open a desired key into the Registration Database. If
the key does not exist, RegOpenKey will fail. When using RegOpenKey you must
pass a pre-existing, open key to create a new key. A pre-defined key may be used.

Note: The opened key should be closed with RegCloseKey.

Example:
key=RegOpenkey(@RegClasses, "txtfile");Find default text editor
who=RegQueryStr(key, "shell\open\command")
RegClosekey(key)
Message("Default text file editor is", who)

; The preceding is actually a hard way to do ...
who=RegQueryStr(@REGClasses, "txtfile\shell\open\command")
Message("Default text file editor is", who)

See Also:
RegCreateKey, RegCloseKey, RegDeleteKey, RegSetValue, RegQueryValue,
RegQueryKey and the section on Registration Database Operations (pg. 508)

RegOpenKeyEx
Opens a registry key with specified access rights.

Syntax:
RegOpenKeyEx(handle,subkey-string,mode[,view-flag[,reserved]])

Parameters:
(i) handle handle to a registration database key
(s) subkey-string a path from the key provided to the desired key
(s/i) mode access mode (see below)
(i) view-flag [optional] controls which registry view the function uses

when accessing the Windows registry.
0 - view indicated by the last call to the RegOpenFlags.
32 - use the 32-bit registry view.
64 - use the 64-bit registry view.

(s) reserved [optional] reserved for future use; should be set to "".

Returns:
(i) a handle to the newly-opened key.

This function is like RegOpenKey, but lets the user specify the desired access rights
(RegOpenKey opens a key with default access, so may fail if the user only has read
permission for the key).

"Mode" may be one of the following pre-defined string values:

Value Name Meaning
READ KEY_READ KEY_QUERY_VALUE |

RegQueryBin

 523

KEY_ENUMERATE_SUB_KEYS |
KEY_NOTIFY |
STANDARD_RIGHTS_READ

WRITE KEY_WRITE KEY_SET_VALUE |
KEY_CREATE_SUB_KEY |
STANDARD_RIGHTS_WRITE

FULL KEY_ALL_ACCESS (KEY_QUERY_VALUE |
KEY_SET_VALUE |
KEY_CREATE_SUB_KEY |
KEY_ENUMERATE_SUB_KEYS |
KEY_NOTIFY |
KEY_CREATE_LINK |
STANDARD_RIGHTS_ALL) &
~SYNCHRONIZE

Or, "mode" may be a bitmask comprised of one or more of the following integer
values, combined using the bitwise OR ('|') operator:

Val Name Meaning
1 KEY_QUERY_VALUE Permission to query subkey

data.
2 KEY_SET_VALUE Permission to set subkey data.
4 KEY_CREATE_SUB_KEY Permission to create subkeys.
8 KEY_ENUMERATE_SUB_KEYS Permission to enumerate

subkeys.
16 KEY_NOTIFY Permission for change

notification.
32 KEY_CREATE_LINK Permission to create a

symbolic link.

See Also:
RegCloseKey, RegOpenFlags, RegOpenKey and the section on Registration
Database Operations (pg. 508)

RegQueryBin
Returns binary value at subkey position.

Syntax:
RegQueryBin(handle,subkey-string[,view-flag])

Parameters:
(i) handle handle to a registration database key.

RegQueryDword

524

(s) subkey-string a path from the key provided to the desired key,
including the "data item name" in square brackets
at the end of the key string.

(i) view-flag [optional] controls which registry view the function uses
when accessing the Windows registry.
0 - view indicated by the last call to the RegOpenFlags.
32 - use the 32-bit registry view.
64 - use the 64-bit registry view.

Returns:
(s) contents of data item at key position desired.

The value is returned as a space-delimited string of hex bytes;
e.g.: "AB 45 3E 01".

Example:
subkey = "Control Panel\Appearance[CustomColors]"
value = RegQueryBin(@REGCURRENT, subkey)
Message("CustomColors", value)

See Also:
RegApp, RegEntryType, RegQueryDword, RegQueryEx, RegQueryExpSz,
RegQueryItem, RegQueryMulSz, RegQueryValue and the section on Registration
Database Operations (pg. 508)

RegQueryDword
Returns DWORD value at subkey position.

Syntax:
RegQueryDword(handle,subkey-string[,flags])

Parameters:
(i) handle handle to a registration database key.
(s) subkey-string a path from the key provided to the desired key,

including the "data item name" in square brackets
at the end of the key string.

(i) flags [optional]
0 - (default) value will be returned in decimal format.
1 - value will be returned in hexadecimal format.
32 - use the 32-bit registry view.
64 - use the 64-bit registry view.

Returns:
(s) contents of data item at key position desired.

Example:
subkey = "Control Panel\Desktop[ScreenSaveUsePassword]"

RegQueryEx

 525

value = RegQueryDword(@REGCURRENT,subkey,0)
Message("ScreenSaveUsePassword", value)

See Also:
RegApp, RegEntryType, RegQueryBin, RegQueryEx, RegQueryExpSz,
RegQueryItem, RegQueryMulSz, RegQueryValue and the section on Registration
Database Operations (pg. 508)

RegQueryEx
Retrieves a value from the registry.

Syntax:
RegQueryEx(handle,subkey-string,delimiter,type[,view-flag])

Parameters:
(i) handle an open registration database key (see below).
(s) subkey-string a path from the key provided to the desired key, including

the "data item name" in square brackets at the end of the key
string.

(s) delimiter a character to act as a delimiter between items. "Delimiter"
is ignored unless "type" is 7.

(i) type see below.
(i) view-flag [optional] controls which registry view the function uses

when accessing the Windows registry.
0 - view indicated by the last call to the RegOpenFlags.
32 - use the 32-bit registry view.
64 - use the 64-bit registry view.

Returns:
(s) a value from the registry.

"type" can be one of the following:

Value Meaning
1 REG_SZ - Unicode null terminated string
2 REG_EXPAND_SZ - Unicode null terminated string (with environment

variable references)
3 REG_BINARY - Free form binary
4 REG_DWORD - 32-bit number
7 REG_MULTI_SZ - Multiple Unicode strings

11 REG_QWORD - 64-bit number

Example:
See the Registry Cloning Script under RegEntryType.

RegQueryExpSz

526

See Also:
RegApp, RegEntryType, RegQueryBin, RegQueryDword, RegQueryExpSz,
RegQueryItem, RegQueryMulSz, RegQueryValue and the section on Registration
Database Operations (pg. 508)

RegQueryExpSz
Retrieves a REG_EXPAND_SZ value from the registry.

Syntax:
RegQueryExpSz(handle,subkey-string[,view-flag])

Parameters:
(i) handle an open registration database key.
(s) subkey-string a path from the key provided to the desired key, including

the "data item name" in square brackets at the end of the key
string.

(i) view-flag [optional] controls which registry view the function uses
when accessing the Windows registry.
0 - view indicated by the last call to the RegOpenFlags.
32 - use the 32-bit registry view.
64 - use the 64-bit registry view.

Returns:
(i) contents of the data item at the key position desired.

Example:
; Note: For 32-bit Path Modifications See RegApp
; Following is location of users path in Windows NT.
userenv="Environment[path]"
sysenv="SYSTEM\CurrentControlSet\Control\Session
Manager\Environment[path]"
if WinMetrics(-4)==4 ; Win NT
 lasterror()
 Errormode(@off)
 oldpath=RegQueryExpSz(@RegCurrent, userenv)
 ErrorMode(@cancel)
 If lasterror() == 1233
 Errormode(@off)
 oldpath=RegQueryExpSz(@RegMachine, sysenv)
 ErrorMode(@cancel)
 if oldpath==0
 Message("Environment Variable - Users Path", "No path found")
 else
 Message("System Environment Variable - Users Path", oldpath)
 endif
 else
 Message("User Environment Variable - Users Path", oldpath)
 exit
endif

RegQueryItem

 527

if WinMetrics(-4) !=4
 Message("RegQueryExpSz","Not supported in Non-NT versions of
Windows")
 exit
endif

See Also:
RegApp, RegEntryType, RegQueryBin, RegQueryDword, RegQueryEx,
RegQueryItem, RegQueryMulSz, RegQueryStr, RegQueryValue and the section on
Registration Database Operations (pg. 508)

RegQueryItem
Returns a list of named data items for a subkey.

Syntax:
RegQueryItem(handle,subkey-string[,view-flag])

Parameters:
(i) handle handle to a registration database key.
(s) subkey-string a path from the key provided to the desired key.
(i) view-flag [optional] controls which registry view the function uses

when accessing the Windows registry.
0 - view indicated by the last call to the RegOpenFlags.
32 - use the 32-bit registry view.
64 - use the 64-bit registry view.

Returns:
(s) tab-delimited list of named data items for the specified

subkey-string.

Example:
items = RegQueryItem(@REGCURRENT,
"Software\Microsoft\Windows\CurrentVersion\Extensions")
item = AskItemList("Select an item", items, @TAB,@SORTED,@SINGLE, @
FALSE)
if RegExistValue(@REGCURRENT,
"Software\Microsoft\Windows\CurrentVersion\Extensions[%item%]") ==
@FALSE
 Message("Error","Item not defined.")
 Exit
endif
value = RegQueryValue(@REGCURRENT,
"Software\Microsoft\Windows\CurrentVersion\Extensions[%item%]")
Message(item, value)

RegQueryKeyLastWriteTime

528

See Also:
RegApp, RegEntryType, RegQueryBin, RegQueryDword, RegQueryEx,
RegQueryExpSz, RegQueryMulSz, RegQueryValue and the section on Registration
Database Operations (pg. 508)

RegQueryKey
Returns subkeys of the specified key.

Syntax:
RegQueryKey(handle,index)

Parameters:
(i) handle handle to a registration database key.
(i) index zero-based index into list of subkeys.

Returns:
(s) name of desired subkey.

Use this function to enumerate the subkeys of a desired key. The first subkey is
referenced by index number 0, the second key by 1, and so on. If the key does not
exist, a null string will be returned.

Example:
for i=0 to 999
 a=RegQueryKey(@REGMACHINE, I)
 if a=="" then break
 Display(2, "HKEY_LOCAL_MACHINE subkey number %i%", a)
next

See Also:
RegOpenKey, RegCreateKey, RegCloseKey, RegDeleteKey, RegEntryType,
RegSetValue, RegQueryKeys, RegQueryValue and the section on Registration
Database Operations (pg. 508)

RegQueryKeyLastWriteTime
Returns the last write time for a registry key. (Windows NT or newer)

Syntax:
RegQueryKeyLastWriteTime(handle,subkey-string[,view-flag])

Parameters:
(i) handle handle to a registration database key.
(s) subkey-string a path from the key provided to the desired key,

including the "data item name" in square brackets
at the end of the key string.

RegQueryMulSz

 529

(i) view-flag [optional] controls which registry view the function uses
when accessing the Windows registry.
0 - view indicated by the last call to the RegOpenFlags.
32 - use the 32-bit registry view.
64 - use the 64-bit registry view.

Returns:
(s) last write time for a registry key, in YmdHms format.

Example:
lastwritetime = RegQueryKeyLastWriteTime(@REGMACHINE,
"Software\Wilson WindowWare")
Message("Last write time:", lastwritetime)
exit

See Also:
RegOpenKey, RegCreateKey, RegCloseKey, RegDeleteKey, RegSetValue,
RegQueryKey, RegQueryKeys, RegQueryValue and the section on Registration
Database Operations (pg. 508)

RegQueryKeys
Returns a tab-delimited list of subkey names under a specified key.

Syntax:
RegQueryKeys(handle)

Parameters:
(i) handle handle to a registration database key.

Returns:
(s) tab-delimited list of subkey names.

Example:
key=RegOpenkey(@RegMachine, "SOFTWARE\Microsoft")
who=RegQueryKeys(key)
RegClosekey(key)
AskItemList("Registry Keys under SOFTWARE\Microsoft", who,
@TAB,@SORTED, @SINGLE)

See Also:
RegOpenKey, RegCreateKey, RegCloseKey, RegDeleteKey, RegSetValue,
RegQueryKey, RegQueryValue and the section on Registration Database Operations
(pg. 508)

RegQueryMulSz
Retrieves a REG_MULTI_SZ value from the registry.

RegQueryQword

530

Syntax:
RegQueryMulSz(handle,subkey-string,delimiter[,view-flag])

Parameters:
(i) handle an open registration database key.
(s) subkey-string a path from the key provided to the desired key, including

the "data item name" in square brackets at the end of the key
string.

(s) delimiter a character to act as a delimiter between items.
(i) view-flag [optional] controls which registry view the function uses

when accessing the Windows registry.
0 - view indicated by the last call to the RegOpenFlags.
32 - use the 32-bit registry view.
64 - use the 64-bit registry view.

Returns:
(s) a list of strings, delimited with the specified delimiter

character.

Example:
key=RegCreatekey(@REGCURRENT, "sample")
RegSetMulSz(key, "testmulz[foods]", "apple|pear|grapes|toast", "|")
RegClosekey(key)
a1=RegOpenkey(@REGCURRENT, "sample")
c=RegQueryMulSz(a1, "testmulz[foods]",@tab)
RegClosekey(a1)
Message("Foods",c)

See Also:
RegApp, RegEntryType, RegQueryBin, RegQueryDword, RegQueryEx,
RegQueryExpSz, RegQueryItem, RegQueryValue and the section on Registration
Database Operations (pg. 508)

RegQueryQword
Retrieves a QWORD value from the registry.

Syntax:
RegQueryQword(handle,subkey-string[,view-flag])

Parameters:
(i) handle an open registration database key.
(s) subkey-string a path from the key provided to the desired key,

including the "data item name" in square brackets
at the end of the key string.

RegQueryStr

 531

(i) view-flag [optional] controls which registry view the function uses
when accessing the Windows registry.
0 - view indicated by the last call to the RegOpenFlags.
32 - use the 32-bit registry view.
64 - use the 64-bit registry view.

Returns:
(s) space-delimited string of hex bytes, beginning with the

low byte of the QWORD.

Example:
key=RegCreatekey(@REGMACHINE, "Software\Wilson WindowWare\Sample")
RegSetQword(key, "TestQword[]", "00 00 62 69 6e 61 72 79")
rslt=RegQueryQword(key, "TestQword[]")
RegClosekey(key)
RegDeleteKey(@REGMACHINE, "Software\Wilson WindowWare\Sample")
Message("Result",rslt)
exit

See Also:
RegSetQword, RegApp, RegEntryType, RegQueryBin, RegQueryEx,
RegQueryExpSz, RegQueryDword, RegQueryItem, RegQueryValue and the section
on Registration Database Operations (pg. 508)

RegQueryStr
Retrieves and expands a string value from the registry.

Syntax:
RegQueryStr(handle,subkey-string[,view-flag])

Parameters:
(i) handle an open registration database key.
(s) subkey-string a path from the key provided to the desired key, including

the "data item name" in square brackets at the end of the key
string.

(i) view-flag [optional] controls which registry view the function uses
when accessing the Windows registry.
0 - view indicated by the last call to the RegOpenFlags.
32 - use the 32-bit registry view.
64 - use the 64-bit registry view.

Returns:
(i) the expanded registry value.

This function can be used to read a REG_SZ or REG_EXPAND_SZ value from the
registry. If the value is a REG_EXPAND_SZ, any environment strings will be

RegQueryValue

532

expanded to their defined values in the string returned by this function (the registry
entry itself is untouched).

Example:
userenv="Environment[path]"
sysenv="SYSTEM\CurrentControlSet\Control\Session
Manager\Environment[path]"

if WinVersion(4)!=4
 Message("RegQueryStr","Not supported in Non-NT versions of
Windows")
 exit
endif

if WinVersion(1)!=4 ; Win NT 4.0
 Message("RegQueryStr","Script not designed for NT 2000 versions of
Windows")
 exit
endif

lasterror()
Errormode(@off)
oldpath=RegQueryStr(@RegCurrent, userenv)
ErrorMode(@cancel)

If lasterror() == 1233
 Errormode(@off)
 oldpath=RegQueryStr(@RegMachine, sysenv)
 ErrorMode(@cancel)
 if oldpath==0
 Message("Environment Variable - Users Path", "No path found")
 else
 Message("System Environment Variable - Users Path", oldpath)
 endif
else
 Message("User Environment Variable - Users Path", oldpath)
 exit
endif
exit

See Also:
RegApp, RegEntryType, RegQueryBin, RegQueryDword, RegQueryEx,
RegQueryExpSz, RegQueryItem, RegQueryValue, RegQueryMulSz and the section
on Registration Database Operations (pg. 508)

RegQueryValue
Returns data item string at subkey position.

Syntax:
RegQueryValue(handle,subkey-string[,view-flag])

RegSetBin

 533

Parameters:
(i) handle handle to a registration database key.
(s) subkey-string a path from the key provided to the desired key, including

the "data item name" in square brackets at the end of the key
string.

(i) view-flag [optional] controls which registry view the function uses
when accessing the Windows registry.
0 - view indicated by the last call to the RegOpenFlags.
32 - use the 32-bit registry view.
64 - use the 64-bit registry view.

Returns:
(s) contents of data item at key position desired.

Use this function to retrieve data items from the Registration Database. The function
will fail if the data item does not exist.

Note: Named data entries are specified by enclosing the data item name in square
brackets at the end of the key string. For example:
RegQueryValue(@REGMACHINE,"SOFTWARE\Wilson WindowWare\Settings
\WWWBATCH\MAIN[SOUNDS]")

Example:
b=RegQueryValue(@REGMACHINE,
"SOFTWARE\Microsoft\Windows\CurrentVersion[Version]")
Message("Windows Version", b)

See Also:
RegApp, RegEntryType, RegQueryBin, RegQueryDword, RegQueryEx,
RegQueryExpSz, RegQueryItem, RegQueryMulSz, RegQueryStr and the section on
Registration Database Operations (pg. 508)

RegSetBin
Sets a binary value in the Registration Database.

Syntax:
RegSetBin(handle,subkey-string,value[,view-flag])

Parameters:
(i) handle handle to a registration database key.
(s) subkey-string a path from the key provided to the desired key, including

the "data item name" in square brackets at the end of the key
string.

(s) value data to be stored into the database at desired key.

RegSetDword

534

(i) view-flag [optional] controls which registry view the function uses
when accessing the Windows registry.
0 - view indicated by the last call to the RegOpenFlags.
32 - use the 32-bit registry view.
64 - use the 64-bit registry view.

Returns:
(i) @TRUE.

The value is specified as a space-delimited string of hex bytes; e.g.:

"AB 45 3E 01".

Example:
RegSetBin(@REGCURRENT, "A Test Key[My Binary Value]", "00 01 22 AB FF
00")
Message("RegSetBin"," Done.")

See Also:
RegApp, RegEntryType, RegSetDword, RegSetEx, RegSetExpSz, RegSetMulSz,
RegSetValue and the section on Registration Database Operations (pg. 508)

RegSetDword
Sets a DWORD value in the Registration Database.

Syntax:
RegSetDword(handle,subkey-string,value[,flags])

Parameters:
(i) handle handle to a registration database key.
(s) subkey-string a path from the key provided to the desired key, including

the "data item name" in square brackets at the end of the key
string.

(i) value dword value to be stored into the database at desired key.
(i) flags [optional]

0 - (default) value will be returned in decimal format.
1 - value will be returned in hexadecimal format.
32 - use the 32-bit registry view.
64 - use the 64-bit registry view.

Returns:
(i) @TRUE data item value was stored.

Example:
RegSetDword(@REGCURRENT, "A Test Key[My DWORD Value]", 32,0)
Message("RegSetDWord","Done.")

RegSetEx

 535

See Also:
RegApp, RegEntryType, RegSetBin, RegSetEx, RegSetExpSz, RegSetMulSz,
RegSetValue and the section on Registration Database Operations (pg. 508)

RegSetEx
Sets a value in the registry.

Syntax:
RegSetEx(handle,subkey-string,value,delimiter,type[,view-flag])

Parameters:
(i) handle an open registration database key.
(s) subkey-string a path from the key provided to the desired key, including

the "data item name" in square brackets at the end of the key
string.

(s) value data to be stored in the database at desired key.
(s) delimiter a character to act as a delimiter between items. "Delimiter"

is ignored unless "type" is 7.
(i) type see below.
(i) view-flag [optional] controls which registry view the function uses

when accessing the Windows registry.
0 - view indicated by the last call to the RegOpenFlags.
32 - use the 32-bit registry view.
64 - use the 64-bit registry view.

Returns:
(s) @TRUE data item value was stored.

Type Meaning
 0 (REG_NONE) No defined value type
 1 (REG_SZ) Unicode null terminated string
 2 (REG_EXPAND_SZ) Unicode null terminated string with environment

variable references
 3 (REG_BINARY) Free form binary
 4 (REG_DWORD) 32-bit number
 7 (REG_MULTI_SZ) Multiple Unicode strings
 11 (REG_QWORD) 64-bit number

Example:
See the Registry Cloning Script under RegEntryType.

See Also:
RegApp, RegEntryType, RegSetBin, RegSetDword, RegSetExpSz, RegSetMulSz,
RegSetValue and the section on Registration Database Operations (pg. 508)

RegSetExpSz

536

RegSetExpSz
Sets a REG_EXPAND_SZ value in the registry.

Syntax:
RegSetExpSz(handle,subkey-string,value[,view-flag])

Parameters:
(i) handle an open registration database key.
(s) subkey-string a path from the key provided to the desired key, including

the "data item name" in square brackets at the end of the key
string.

(s) value data to be stored in the database at desired key.
(i) view-flag [optional] controls which registry view the function uses

when accessing the Windows registry.
0 - view indicated by the last call to the RegOpenFlags.
32 - use the 32-bit registry view.
64 - use the 64-bit registry view.

Returns:
(i) @TRUE data item value was stored.

Example:
; Note: To modify path in NT 4.0+
; See the RegApp function
; The Following is the location of users path in Windows NT
; For the User Environment Path variable use:
 userenv="Environment[path]"
; For the System Environment Path variable use:
sysenv="SYSTEM\CurrentControlSet\Control\Session
Manager\Environment[path]"

; Directory to add to the path
addpath="Q:\"

if WinMetrics(-4)==4 ;Check to make sure system is Windows NT.
 LastError() ;clear the errors
 Errormode(@off) ;tell WB we'll handle the errors
 oldpath=RegQueryExpSz(@RegCurrent, userenv)
 ErrorMode(@cancel)

 If LastError() == 1233
 Message("Users Path", "No path found, replacement not made.")
 else
 newpath=strcat(oldpath,";",addpath)
 c=RegSetExpSz(@RegCurrent, userenv, newpath)
 Message("Users new path is", newpath)
 WININICHG=26
 DaDll=Strcat(DirWindows(1),"USER32.DLL")
 DllCall(DaDll,long:"SendMessageA",long:-1, long:WININICHG,
long:0, lpstr:"Environment")

RegSetMulSz

 537

 endif
 exit
else
 Message("RegQueryExpSz","Not supported by Non-NT registry")
endif

See Also:
RegApp, RegEntryType, RegSetBin, RegSetDword, RegSetExpSz, RegSetMulSz,
RegSetValue and the section on Registration Database Operations (pg. 508)

RegSetMulSz
Sets a REG_MULTI_SZ value in the registry.

Syntax:
RegSetMulSz(handle,subkey-string,value,delimiter[,view-flag])

Parameters:
(i) handle an open registration database key.
(s) subkey-string a path from the key provided to the desired key,including

the "data item name" in square brackets at the end of the key
string.

(s) value a list of strings, delimited with the specified delimiter
character.

(s) delimiter a character to act as a delimiter between items.
(i) view-flag [optional] controls which registry view the function uses

when accessing the Windows registry.
0 - view indicated by the last call to the RegOpenFlags.
32 - use the 32-bit registry view.
64 - use the 64-bit registry view.

Returns:
(i) @TRUE data item value was stored.

Example:
key=RegCreatekey(@REGCURRENT, "sample")
RegSetMulSz(key, "testmulz[foods]", "apple|pear|grapes|toast", "|")
RegClosekey(key)
a1=RegOpenkey(@REGCURRENT, "sample")
c=RegQueryMulSz(a1, "testmulz[foods]",@tab)
RegClosekey(a1)
Message("Foods",c)
exit

See Also:
RegApp, RegEntryType, RegSetBin, RegSetDword, RegSetEx, RegSetExpSz,
RegSetValue and the section on Registration Database Operations (pg. 508)

RegSetValue

538

RegSetQword
Sets a QWORD value in the registry.

Syntax:
RegSetQword(handle,subkey-string,value[,view-flag])

Parameters:
(i) handle an open registration database key.
(s) subkey-string a path from the key provided to the desired key,

including the "data item name" in square brackets
at the end of the key string.

(i) value a space-delimited string of hex bytes, beginning with the
low byte of the QWORD.

(i) view-flag [optional] controls which registry view the function uses
when accessing the Windows registry.
0 - view indicated by the last call to the RegOpenFlags.
32 - use the 32-bit registry view.
64 - use the 64-bit registry view.

Returns:
(i) @TRUE data item value was stored.

Example:
key=RegCreatekey(@REGMACHINE, "Software\Wilson WindowWare\Sample")
RegSetQword(key, "TestQword[]", "00 00 62 69 6e 61 72 79")
rslt=RegQueryQword(key, "TestQword[]")
RegClosekey(key)
RegDeleteKey(@REGMACHINE, "Software\Wilson WindowWare\Sample")
Message("Result",rslt)
exit

See Also:
RegQueryQword, RegApp, RegEntryType, RegSetBin, RegSetDword, RegSetEx,
RegSetExpSz, RegSetValue and the section on Registration Database Operations
(pg. 508)

RegSetValue
Sets the value of a data item in the Registration Database.

Syntax:
RegSetValue(handle,subkey-string,value[,view-flag])

Parameters:
(i) handle handle to a registration database key.
(s) subkey-string a path from the key provided to the desired key, including

the "data item name" in square brackets at the end of the key
string.

RegUnloadHive

 539

(s) value data to be stored into the database at desired key.
(i) view-flag [optional] controls which registry view the function uses

when accessing the Windows registry.
0 - view indicated by the last call to the RegOpenFlags.
32 - use the 32-bit registry view.
64 - use the 64-bit registry view.

Returns:
(i) @TRUE data item was stored; @FALSE operation failed.

Use this function to store data items into the Registration Database. If the desired key
does not exist, the function will create it.

Note: Named data entries are specified by enclosing the data item name in square
brackets at the end of the key string. For example:
RegSetValue(@REGMACHINE,"SOFTWARE\Wilson WindowWare\Settings
\WWWBATCH\MAIN[SOUNDS]",1)

Example:
; Associate DIZ files with default textfile editor
key=RegCreatekey(@REGCLASSES, ".diz")
RegSetValue(key, "", "txtfile")
RegClosekey(key)

; The preceding is actually a hard way to do ...
RegSetValue(@REGCLASSES, ".diz", "txtfile")

See Also:
RegApp, RegEntryType, RegSetBin, RegSetDword, RegSetEx, RegSetExpSz,
RegSetMulSz and the section on Registration Database Operations (pg. 508)

RegUnloadHive
Unloads a hive from the registry.

Syntax:
RegUnloadHive(handle,subkey)

Parameters:
(i) handle either @REGUSERS or @REGMACHINE.
(s) subkey the name of a key which is mapped to a hive file.

Returns:
(i) @TRUE on success.

Return

540

Windows Vista or newer: This function may require an Administrator level
account, because it attempts to access to the HKEY_LOCAL_MACHINE registry
key.

Example:
RegUnloadHive(@REGMACHINE, "WinWare")

See Also:
RegLoadHive and the section on Registration Database Operations (pg. 508)

Reload {*M}
Reloads menu file(s).

Syntax:
Reload()

Parameters:
(none)

Returns:
(i) @TRUE.

This function is used to reload the WIL Interpreter's menu file(s). It is useful after
editing a menu file, to cause the changes to immediately take effect.

Note1: This command does not take effect until the WIL program has completed,
regardless of where the command may appear in the program.

Note2: This command is not part of the WIL Interpreter package, but is documented
here because it has been implemented in many of the shell or file manager-type
applications which use the WIL Interpreter.

Example:
RunZoomWait("notepad.exe", "c:\win\cmdpost.cpm")
Reload()

Return
Used to return from a Call to the calling program or to return from a GoSub :label.

Syntax:
Return

Parameters:
(dependent) depends on use, see below.

RtStatus

 541

Returns:
(dependent) the Return command can return a value, by specifying a

value (or an expression that evaluates to a value) after the
"Return" keyword, except when using GoSub.

The Return statement returns to the statement following the most recently executed
Call, GoSub or UDF. If there is no matching Call, GoSub or UDF, an Return is
assumed.

The Return command can return a value, by specifying a value (or an expression
that evaluates to a value) after the "Return" keyword. The value or expression may
optionally be enclosed in parentheses. This feature can be used with the Call
command, and with the User-Defined-Functions. It does not affect the Gosub
command.

Examples:
 Return
 Return (10)
 Return "Okay"
 Return myvariable * 10
 Return (ItemCount(list, @TAB))

A script run with the Call command can now return a value by using a Return
command with a value (see above). If a Return command without a value is used,
or the called script does not contain a Return command, the called script will return
0.

example:
 result = Call("other.wbt", "")

Example:
Display(2, "End of subroutine", "Returning to MAIN.WBT")
Return

See Also:
Call, Exit, GoSub, User-Defined-Functions

RtStatus
Returns a number indicating the current execution mode of WinBatch.

Syntax:
RtStatus()

Parameters:
(none)

Run

542

Returns:
(i) execution mode:

0 - WinBatch Interpreter
1 - Compiled WinBatch EXE file
5 - Compiled WinBatch Service (EXS file)
10 - WinBatch Studio debug
12 = FileMenu
13 = PopMenu
14 = WebBatch

Example:
flag=rtStatus()
switch flag
 case 0
 type="WinBatch Interpreted Script"
 break
 case 1
 type="Compiled WinBatch EXE file"
 break
 case 5
 type="Compiled WinBatch Service (EXS file)"
 break
 case 10
 type="WinBatch Studio Debug"
 break
 case 12
 type="FileMenu"
 break
 case 13
 type="PopMenu"
 break
 case 14
 type="WebBatch"
 break
 case flag
 type="Unknown"
 break
end switch
Message("Code running as",type)

Run
Runs a program as a normal window.

Syntax:
Run(program-name,params)

Parameters:
(s) program-name the name of the desired .EXE, .COM, .PIF, .BAT file, or a

data file.

RunEnviron

 543

(s) params optional parameters as required by the application.

Returns:
(i) @TRUE if the program was found; @FALSE if it wasn't.

Use this command to run an application.

If the drive and path are not part of the program name, the current directory will be
examined first, followed by the Windows and Windows System directories, and then
the DOS path will be searched to find the desired executable file.

If the "program-name" has an extension other than .EXE, .COM, .PIF, or .BAT, it
will be run with the associated application. When this happens, any "parameters" you
specified are ignored.

Examples:
Run("notepad.exe", "abc.txt")

Run("paint.exe", "pict.msp")

See Also:
RunShell, AppExist, RunHide, RunIcon, RunWait, RunZoom, ShellExecute,
WinClose, WinExeName, WinWaitClose

RunEnviron
Launches a program and has it inherit the current environment as set with the
EnvironSet command.

Syntax:
RunEnviron(program-name,params,display mode,waitflag)

Parameters:
(s) program-name the name of the desired Windows EXE file.
(s) params optional parameters as required by the application.
(i) display mode @NORMAL, @ICON, @ZOOMED, @HIDDEN,

@NOACTIVATE.
(i) waitflag @WAIT, @NOWAIT.

Returns:
(i) @TRUE executed normally; @FALSE failed.

Use this function to launch a program with the current environment.

Only Windows EXE’s may be executed with this command. It is possible to change
the environment for DOS programs by launching a DOS BAT file that includes DOS
SET statements to alter the environment settings before executing the DOS program.
Use the Run commands to launch DOS programs and BAT files.

This function is identical to the RunShell function.

RunHide

544

To alter the path for DOS programs, all that is required is a simple batch file, and the
usual WIL Run command. Assuming the case where one wished to run "cmd.exe"
with the path "c:\special", a generic batch file as shown below will suffice, along
with passing all the information required as parameters in the WIL Run command.

 DoPath.bat file listing
 SET PATH=%1
 ECHO %PATH%
 PAUSE
 %2 %3 %4 %5 %6 %7 %8 %9

 WIL Run Command
 Run("dopath.bat", "c:\special cmd.exe")

If the "program-name" has an extension other than .EXE, .COM, .PIF, or .BAT, it
will be run with the associated application.

The @NOACTIVATE value causes the targeted application's window to be
displayed in its most recent size and position but without making the application's
window the active window when another top-level window is already active.

Example:
;Note: Permanent changes may be made by
;using the registry functions to update the registry.
;
;Note that this function will not affect the environment for
; DOS or Console applications
;
;Note: Modifying the path does not allow assist WIL in
;locating the EXE file. The path WIL uses has already
;been pre-determined. However the child process (excel)
;will inherit the PATH environment variable in this case.

EnvironSet("PATH","c:\Program Files\Excel\")
RunEnviron("c:\Program Files\Excel\Excel.exe","",@NORMAL,@WAIT)

See Also:
RunShell, Run, RunWait, Environment, EnvironSet, ShellExecute

RunHide
Runs a program as a hidden window.

Syntax:
RunHide(program-name,params)

Parameters:
(s) program-name name of the desired .EXE, .COM, .PIF, .BAT, or data file.
(s) params optional parameters as required by the application.

RunHideWait

 545

Returns:
(i) @TRUE if the program was found; @FALSE if it wasn't.

Use this command to run an application as a hidden window.

If the drive and path are not part of the program name, the current directory will be
examined first, followed by the Windows and Windows System directories, and then
the DOS path will be searched to find the desired executable file.

If the "program-name" has an extension other than .EXE, .COM, .PIF, or .BAT, it
will be run with the associated application.

Note: When this command launches an application, it merely informs it that you
want it to run as a hidden window. Whether or not the application honors your wish
is beyond RunHide's control.

Examples:
RunHide("notepad.exe", "abc.txt")

RunHide("paint.exe", "pict.msp")

See Also:
RunShell, Run, RunHideWait, RunIcon, RunZoom, ShellExecute, WinClose,
WinExeName, WinHide, WinWaitClose

RunHideWait
Runs a program as a hidden window, and waits for it to close.

Syntax:
RunHideWait(program-name,params)

Parameters:
(s) program-name name of the desired .EXE, .COM, .PIF, .BAT, or data file.
(s) params optional parameters as required by the application.

Returns:
(i) @TRUE if the program was found; @FALSE if it wasn't.

Use this command to run an application as a hidden window. The WIL program will
suspend processing until the application is closed.

If the drive and path are not part of the program name, the current directory will be
examined first, followed by the Windows and Windows System directories, and then
the DOS path will be searched to find the desired executable file.

If the "program-name" has an extension other than .EXE, .COM, .PIF, or .BAT, it
will be run with the associated application.

RunIconWait

546

Note: When this command launches an application, it merely informs it that you
want it to run as a hidden window. Whether or not the application honors your wish
is beyond RunHideWait's control.

Example:
RunHideWait(Environment("COMSPEC"), "/c dir *.exe> temp.txt")
Print("temp.txt","",@NORMAL,0)

See Also:
RunShell, RunHide, RunIconWait, RunWait, RunZoomWait, ShellExecute,
WinWaitClose

RunIcon
Runs a program as an iconic (minimized) window.

Syntax:
RunIcon(program-name,params)

Parameters:
(s) program-name name of the desired .EXE, .COM, .PIF, .BAT, or data file.
(s) params optional parameters as required by the application.

Returns:
(i) @TRUE if the program was found; @FALSE if it wasn't.

Use this command to run an application as an icon.

If the drive and path are not part of the program name, the current directory will be
examined first, followed by the Windows and Windows System directories, and then
the DOS path will be searched to find the desired executable file.

If the "program-name" has an extension other than .EXE, .COM, .PIF, or .BAT, it
will be run with the associated application.

Note: When this command launches an application, it merely informs it that you
want it to begin as an icon. Whether or not the application honors your wish is
beyond RunIcon's control.

Examples:
RunIcon("notepad.exe", "")

See Also:
RunShell, Run, RunHide, RunIconWait, RunZoom, ShellExecute, WinClose,
WinExeName, WinIconize, WinWaitClose

RunIconWait
Runs a program as an iconic (minimized) window, and waits for it to close.

RunShell

 547

Syntax:
RunIconWait(program-name,params)

Parameters:
(s) program-name name of the desired .EXE, .COM, .PIF, .BAT, or data file.
(s) params optional parameters as required by the application.

Returns:
(i) @TRUE if the program was found; @FALSE if it wasn't.

Use this command to run an application as an icon. The WIL program will suspend
processing until the application is closed.

If the drive and path are not part of the program name, the current directory will be
examined first, followed by the Windows and Windows System directories, and then
the DOS path will be searched to find the desired executable file.

If the "program-name" has an extension other than .EXE, .COM, .PIF, or .BAT, it
will be run with the associated application.

Note: When this command launches an application, it merely informs it that you
want it to begin as an icon. Whether or not the application honors your wish is
beyond RunIconWait's control.

Example:
comspec = Environment("COMSPEC")
params = "/c dir *.exe>temp.txt"
RunIconWait(comspec, params)
Message("RunIconWait","It Ran, It Iconned, It Waited.")
exit

See Also:
RunShell, RunHideWait, RunIcon, RunWait, RunZoomWait, ShellExecute,
WinWaitClose

RunShell
An advanced form of the Run function that even allows the specification of a
working directory, along with the window view mode and whether or not to wait for
completion of the run program in a single function.

Syntax:
RunShell(program-name,params,directory,displaymode,waitflag)

Parameters:
(s) program-name name of the desired .EXE, .COM, .PIF, .BAT, or data file.
(s) params optional parameters as required by the application.
(s) directory target directory (if applicable).
(i) displaymode @NORMAL, @ICON, @ZOOMED, @HIDDEN,

@NOACTIVATE.

RunWait

548

(i) waitflag @WAIT, @NOWAIT, @GETPROCID,
@GETEXITCODE.

Returns:
(i) @TRUE if the program was found; @FALSE if it wasn't.

If a data file is specified instead of an executable file (i.e. EXE, COM, PIF, or BAT
file), the function examines the extension of the data file, looks the extension up in
the Windows registry to determine the owning application and starts the owning
application, passing the data file name as a parameter. Applications that support this
command or their setup programs will generally make the necessary modifications to
the Windows registry to allow this function to perform successfully.

If the drive and path are not part of the program name, the current directory will be
examined first, followed by the Windows and Windows System directories, and then
the DOS path will be searched to find the desired executable file.

The @NOACTIVATE value causes the targeted application's window to be
displayed in its most recent size and position but without making the application's
window the active window when another top-level window is already active.

If the @WAIT parameter is used, the WIL program will suspend processing until
the application is closed.

If the @GETPROCID parameter is used, a process-id will be returned that can be
used with the function WinItemProcID.

If the @GETEXITCODE parameter is used, the exit code of an application that is
launched with the RunShell function will be returned. This is the same as specifying
@WAIT, except that on success the function will return the exit code of the
application that was launched.

Note: When this command launches an application, it merely informs it how you
wish it to appear on the screen. Whether or not the application honors your wish is
beyond this function's control.

Example:
RunShell("NOTEPAD.EXE", "CONFIG.SYS", "C:\", @NORMAL, @NOWAIT)

See Also:
IntControl 64, Print, Run, RunWait, ShellExecute, WinItemProcID

RunWait
Runs a program as a normal window, and waits for it to close.

Syntax:
RunWait(program-name,params)

RunWithLogon

 549

Parameters:
(s) program-name name of the desired .EXE, .COM, .PIF, .BAT, or data file.
(s) params optional parameters as required by the application.

Returns:
(i) @TRUE if the program was found; @FALSE if it wasn't.

Use this command to run an application. The WIL program will suspend processing
until the application is closed.

If the drive and path are not part of the program name, the current directory will be
examined first, followed by the Windows and Windows System directories, and then
the DOS path will be searched to find the desired executable file.

If the "program-name" has an extension other than .EXE, .COM, .PIF, or .BAT, it
will be run with the associated application.

Example:
RunWait(Environment("COMSPEC"), "/c dir *.exe>temp.txt")
Print("temp.txt","",@NORMAL,0)
WinWaitClose("~Notepad")
FileDelete("temp.txt")

See Also:
AppWaitClose, Run, RunShell, RunHideWait, RunIconWait, RunZoomWait,
ShellExecute, WinWaitClose, WinWaitExist

RunWithLogon
Runs a program as a specified user. (Windows 2000+)

Syntax:
RunWithLogon(program-name,params,directory,display mode,waitflag,

username,domain,password,logon-flags)

Parameters:
(s) program-name name of the desired .EXE, .COM, .PIF, .BAT, or data file.
(s) params optional parameters as required by the application.
(s) directory target directory (if applicable).
(i) display mode @NORMAL, @ICON, @ZOOMED, @HIDDEN,

@NOACTIVATE.
(i) waitflag @WAIT, @NOWAIT, @GETPROCID.
(s) username specifies the name of the user account to

log on to. Note: If you use the UPN format
(user@DNS_domain_name),
"domain" must be a blank string ("").

RunWithLogon

550

(s) domain specifies the name of the domain or server whose
account database contains the "username" account.
Note: If this parameter is a blank string, "username"
must be specified in UPN format.

(s) password specifies the password for the "username" account.
(i) logon-flags see below.

"logon-flags" can be one of the following values:

Value Name Meaning
0 Default No logon-flag.
1 LOGON_WITH_PROFILE Log on, then load the user's

profile. Loading the profile can
be time-consuming, so it is best
to use this value only if you must
access the user's profile
information.

2 LOGON_NETCREDENTIALS_ONLY Log on, but use the specified
credentials on the network only.
This value can be used to create
a process that uses a different set
of credentials locally than it does
remotely. This is useful in inter-
domain scenarios where there is
no trust relationship.

If a data file is specified instead of an executable file (i.e. EXE, COM, PIF, or BAT
file), the function examines the extension of the data file, looks the extension up in
the Windows registry to determine the owning application and starts the owning
application, passing the data file name as a parameter. Applications that support this
command or their setup programs will generally make the necessary modifications to
the Windows registry to allow this function to perform successfully.

If the drive and path are not part of the program name, the current directory will be
examined first, followed by the Windows and Windows System directories, and then
the DOS path will be searched to find the desired executable file.

The @NOACTIVATE value causes the targeted application's window to be
displayed in its most recent size and position but without making the application's
window the active window when another top-level window is already active.

If the @WAIT parameter is used, the WIL program will suspend processing until
the application is closed.

If the @GETPROCID parameter is used, a process-id will be returned that can be
used with the function WinItemProcID.

RunWithLogon

 551

Notes: When this command launches an application, it merely informs it how you
wish it to appear on the screen. Whether or not the application honors your wish is
beyond this function's control.

Windows Server 2003 and Windows XP:

There is a known issue on Windows XP SP1and 2003 where the RunWithLogon
function ignoring the 'display mode' parameter. There is a windows service pack
update/hotfix that addresses this problem. See Microsoft's knowledgebase article
818858, for details.

RunWithLogon accesses the 'program-name' in the security context of the target
user. If the executable you want to launch is on a network and a network drive letter
is specified in the path, the network drive letter is not available to the target user, as
network drive letters are assigned on a per logon basis, thus this function will fail. If
the executable you want to launch is on a network, use the UNC path.

Issues involved with RunWithLogon when you change the credentials under
which a program runs:

RunWithLogon changes the security context of the script. Security context is
nothing more than a 'sandbox' in which programs can all play. When you are logged
on to a NT platform system, your session consists of multiple processes, with each
process running one program. When you connect a drive letter to a network resource,
that drive letter only exists within your security context. Other sessions [e.g. other
terminal sessions on a terminal server system, services running under separate user
accounts different from your own] have separate security contexts and thus they
don't see your drive letter mappings as they exist in their own private 'sandboxes'.
When you use RunWithLogon() to make use of impersonation, you are causing that
process to run in a separate security context.

Examples:
Example 1
DirChange(DirWindows(0))
;check the platform
if WinVersion(5) >= "2-5-0" ;Win2000 or newer
 ;NOTE: For security reasons *always* assign the password
 ; to a variable and then use the variable in the RunWithLogon
 ; statement. NEVER hardcode the password into the
 ; RunWithLogon statement or else the password my be
 ; exposed if the RunWithLogon fails on some kind of error
 ; This is also a good idea with the userid and domain
 ; information
 runas_user = "Administrator"
 runas_pswd = "password"
 runas_domain = ComputernameGet(0) ; local account database
 ; The following should be on one line
 RunWithLogon("NOTEPAD.EXE", "", "C:\", @NORMAL, @NOWAIT,
 runas_user, runas_domain, runas_pswd,1)
else
 Message("RunWithLogon","Is not designed for this platform.")

RunWithLogon

552

endif
exit

Example 2
;This script supports four subroutines
; :SETINFO - code to specify Admin userid and password and domain
; :BEFORE - code that executes in user mode BEFORE running as admin
; :ADMIN - code that runs as ADMIN
; :AFTER - code that executes in user mode AFTER running as admin

; Basically this script executes the BEFORE subroutine, then does a
; RUNWITHLOGON to run a copy of itself in admin mode. When the admin
; mode portion exits, then this script executes the AFTER subroutine.
; When the original script performs the RUNWITHLOGON it adds an
; additional parameter to the script's command line (if any), which
; is the string URADMIN, to let the admin script know that it is
; already in admin mode so that it can do that portion of the code.

; The top section of this example can generally be used as-is. The
; intent is that all the changes required can be done in the four
; Gosub's at the bottom.

; This picks up the entire passed parameter line to see if the
; URADMIN parameter exits
moiparams=IntControl(1006,0,0,0,0)

; Check passed parameters for URADMIN string
if StrIndexNC(moiparams,"URADMIN",0,@fwdscan) == 0

 ; URDAMIN NOT FOUND. Not running as Admin.
 ; check to see if doing this is supported
 if WinVersion(5) >= "2-5-0" ;Win2k or newer.
 ; RunWithLogon supported.
 ; GOSUB BEFORE code
 Gosub BEFORE

 ; Set up to RUN a copy of this script with ADMIN privileges
 Gosub SETINFO
 moi=WinExename("") ;Get current script name
 moiparams=strcat(moiparams, " URADMIN") ;Add URADMIN to param
 ; The following should be on one line
 RunWithLogon(moi, moiparams, "", @NORMAL, @WAIT,runas_user,
 runas_domain, runas_pswd,0)

 ; GOSUB the AFTER code here
 GOSUB AFTER

 ;Quit. Script is complete
 ; Drop out of if/endif to exit statement

 else ; RUNWITHLOGON not supported on this platform
 ; Provide error message and exit

RunWithLogon

 553

 Message("RunWithLogon","Is not designed for this platform.")
 ; Drop out of if/endif to exit statement
 endif
else
 ; Already launched as admin
 param0 = param0-1 ; Remove the URADMIN param
 ;Do the ADMIN code
 GOSUB ADMIN
 ; Drop out of if/endif to exit statement
endif
exit

:SETINFO
 ; This subroutine is used to setup the account
 ; information required to Run as the Administrator.
 ; Userid, password, and domain are defined here

 ;NOTE: For security reasons *always* assign the password
 ; to a variable and then use the variable in the RunWithLogon
 ; statement. NEVER hardcode the password into the
 ; RunWithLogon statement or else the password my be
 ; exposed if the RunWithLogon fails on some kind of error
 ; This is also a good idea with the userid and domain
 ; information

 runas_user = "Administrator"
 runas_pswd = "secretpassword"
 runas_domain = ComputernameGet(0); local account database
 return

:BEFORE
 ; Running in user mode, BEFORE running the admin mode
 ; portion of the script

 Message("Debug","Executing BEFORE section of script")
 return

:ADMIN
 ;-------------------------------
 ; Running in ADMIN mode.
 ;-------------------------------
 Message("Debug","Running ADMIN section of script")
 return

:AFTER
 ; Running in user mode, AFTER running the admin mode
 ; portion of the script
 Message("Debug","Executing AFTER section of script")
 return

See Also:
RunShell, Run, RunHide, RunIcon, RunZoomWait, ShellExecute, WinClose,
WinExeName, WinWaitClose, WinZoom

RunZoomWait

554

RunZoom
Runs a program as a full-screen (maximized) window.

Syntax:
RunZoom(program-name,params)

Parameters:
(s) program-name name of the desired .EXE, .COM, .PIF, .BAT, or data file.
(s) params optional parameters as required by the application.

Returns:
(i) @TRUE if the program was found; @FALSE if it wasn't.

Use this command to run an application as a full-screen window.

If the drive and path are not part of the program name, the current directory will be
examined first, followed by the Windows and Windows System directories, and then
the DOS path will be searched to find the desired executable file.

If the "program-name" has an extension other than .EXE, .COM, .PIF, or .BAT, it
will be run with the associated application.

Note: When this command launches an application, it merely informs it that you
want it to be maximized to full-screen. Whether or not the application honors your
wish is beyond RunZoom's control.

Examples:
RunZoom("notepad.exe", "abc.txt")
RunZoom("notepad.exe", "")
RunZoom("paint.exe", "pict.msp")

See Also:
RunShell, Run, RunHide, RunIcon, RunZoomWait, ShellExecute, WinClose,
WinExeName, WinWaitClose, WinZoom

RunZoomWait
Runs a program as a full-screen (maximized) window, and waits for it to close.

Syntax:
RunZoomWait(program-name,params)

Parameters:
(s) program-name name of the desired .EXE, .COM, .PIF, .BAT, or data file.
(s) params optional parameters as required by the application.

Returns:
(i) @TRUE if the program was found; @FALSE if it wasn't.

Select

 555

Use this command to run an application as a full-screen window. The WIL program
will suspend processing until the application is closed.

If the drive and path are not part of the program name, the current directory will be
examined first, followed by the Windows and Windows System directories, and then
the DOS path will be searched to find the desired executable file.

If the "program-name" has an extension other than .EXE, .COM, .PIF, or .BAT, it
will be run with the associated application.

Note: When this command launches an application, it merely informs it that you
want it to be maximized to full-screen. Whether or not the application honors your
wish is beyond RunZoomWait's control.

Example:
RunZoomWait(Environment("COMSPEC"), "/c dir *.exe>temp.txt")
Print("temp.txt","",@NORMAL,0)

See Also:
RunShell, RunHideWait, RunIconWait, RunWait, RunZoom, ShellExecute,
WinWaitClose

Select
The Select statement allows selection among multiple blocks of statements.

Syntax:
Select expression
 case expression
 statements
 break
 case expression
 statements
 break
EndSelect

Parameters:
(s) expression an expression that must evaluate to an integer.

The Select statement allows selection among multiple blocks of statements,
depending on the value of an expression. The expression must evaluate to an integer.

The Select statement causes the statements in the select body to be scanned by the
parser as it attempts to find a case statement. When a case statement is found, the
expression following the case statement is evaluated, and if the expression evaluates
to the same value as the expression following the Select statement, execution of the
following statements is initiated. The EndSelect statement terminates the Select
structure.

SendKey

556

If a matching case expression was found, and execution was initiated, the following
statements will affect continued execution:

 Break Terminates the Select structure and transfers control to the
statement following the next matching EndSelect.

 Continue Stops execution and resumes scanning for a case statement.

 Case Ignored. Treated as a comment.

 EndSelect Terminates the Select structure and transfers control to the
next statement.

Note: Switch and Select may be used interchangeably. They are synonyms for the
same statement.

EndSwitch, EndSelect, "End Switch", and "End Select" may be used
interchangeably.

Example:
response=AskLine("Select", "Enter a number between 1 and 3", 1, 0)
Select response
 case 1
 Message("Select", "Case 1 entered")
 break
 case 2
 Message("Select", "Case 2 entered")
 break
 case 3
 Message("Select", "Case 3 entered")
 break
 case response ; default case
 Message("Select", "Default case entered")
 break
EndSelect

See Also:
If, For, GoSub, While

SendKey
Sends keystrokes to the currently active window.

Syntax:
SendKey(char-string)

Parameters:
(s) char-string string of regular and/or special characters.

Returns:
(i) @FALSE.

SendKey

 557

Note: SendKey will send keystrokes to the currently active window. For many
applications, the related functions, SendKeysChild, SendKeysTo or SendMenusTo
may be better alternatives.

This function is used to send keystrokes to the active window, just as if they had
been entered from the keyboard. Any alphanumeric character, and most punctuation
marks and other symbols which appear on the keyboard, may be sent simply by
placing it in the "char-string".

In addition, the following special characters, enclosed in "curly" braces, may be
placed in "char-string" to send the corresponding special characters:

Key SendKey equivalent

~ {~} ; This is how to send a ~
! {!} ; This is how to send a !
^ {^} ; This is how to send a ^
+ {+} ; This is how to send a +
{ {{} ; This is how to send a {
} {}} ; This is how to send a }
Alt {ALT}
Backspace {BACKSPACE} or {BS}
Clear {CLEAR}
Ctrl-Break {CANCEL}
Delete {DELETE} or {DEL}
Down Arrow {DOWN}
End {END}
Enter {ENTER} or ~
Escape {ESCAPE} or {ESC}
F1 through F16 {F1} through {F16}
Help {HELP}
Home {HOME}
Insert {INSERT} or {INS}
Left Arrow {LEFT}
Page Down {PGDN}
Page Up {PGUP}
Pause {PAUSE}
Right Arrow {RIGHT}
Space {SPACE} or {SP}
Tab {TAB}
Up Arrow {UP}

Additional special characters to the SendKey (and SendKeysTo and
SendKeysChild) functions:

Key SendKey equivalent
0 on numeric keypad {NUMPAD0}
1 on numeric keypad {NUMPAD1}

SendKey

558

2 on numeric keypad {NUMPAD2}
3 on numeric keypad {NUMPAD3}
4 on numeric keypad {NUMPAD4}
5 on numeric keypad {NUMPAD5}
6 on numeric keypad {NUMPAD6}
7 on numeric keypad {NUMPAD7}
8 on numeric keypad {NUMPAD8}
9 on numeric keypad {NUMPAD9}
* on numeric keypad {NUMPAD*}
+ on numeric keypad {NUMPAD+}
- on numeric keypad {NUMPAD-}
. on numeric keypad {NUMPAD.}
/ on numeric keypad {NUMPAD/}
Enter on numeric keypad {NUMPAD~}
Print Screen {PRTSC}
% (single percent sign) %%

In the following, "Standalone" means the key is pressed and then released.
"Combination" means the key is held down while the following key is pressed. These
may or may not work for any particular application or situation:

Left Alt key, standalone {LALT}
Right Alt key, standalone {RALT}
Left Control key, standalone {LCONTROL}
Right Control key, standalone {RCONTROL}
Left Shift key, standalone {LSHIFT}
Right Shift key, standalone {RSHIFT}
Left Windows key, standalone {LWIN}
Right Windows key, standalone {RWIN}
Applications key, standalone {APPS}
Left Alt key, combination {*LALT}
Right Alt key, combination {*RALT}
Left Control key, combination {*LCONTROL}
Right Control key, combination {*RCONTROL}
Left Shift key, combination {*LSHIFT}
Right Shift key, combination {*RSHIFT}
Left Windows key, combination {*LWIN} ;see notes below
Right Windows key, combination {*RWIN} ;see notes below
Applications key, combination {*APPS}

Notes: The left and right Alt, Control, and Shift keys can only be distinguished
on Windows NT or newer. On other platforms they are treated as plain Alt,
Control, and Shift keys, respectively.

The "Windows" and Applications" keys are on the Microsoft Natural keyboard.

SendKey

 559

In the specific case of "{*LWIN}L" or "{*RWIN}L" which would be the
keystrokes to swap a currently logged-in user (in Windows XP and newer), a
problem occurs where the user session that executed the SendKey misses the
key-up of the Windows key. When returning to that user session, the system
thinks the Windows key is still depressed, and thus keyboard input does not
work properly. The problem can be manually cleared by pressing the Windows
key again and hitting Escape to clear the Start Menu that pops up. Thus it is
recommended that you do not attempt to use these key combinations in a script
to swap users. As an alternative you may wish to look into the RunWithLogon
function which allows a program to be run as another user.

To enter an Alt, Control, or Shift key combination, precede the desired character
with one or more of the following symbols:

Alt !
Control ^
Shift +

To enter Alt-S:
SendKey("!s")

To enter Ctrl-Shift-F7:
SendKey("^+{F7}")

You may also repeat a key by enclosing it in braces, followed by a space and the
total number of repetitions desired.

To type 20 asterisks:
SendKey("{* 20}")

To move the cursor down 8 lines:
SendKey("{DOWN 8}")

To toggle a checkbox:
SendKey("{+}") ;always checks a checkbox
SendKey("{-}") ;always unchecks a checkbox

To type a single percent sign:
SendKey("%%") ;types a single percent sign

Example:
; start Notepad, and use *.* for filenames
Run("notepad.exe", "")
SendKey("!fo*.*~")

SendKeysChild

560

In those cases where you have an application which can accept text pasted in from
the clipboard, it will often be more efficient to use the ClipGet function:
Run("notepad.exe", "")
; copy some text to the clipboard
ClipPut("Dear Sirs:":@CRLF:@CRLF)
; paste the text into Notepad (using Ctrl-v)
SendKey("^v")

A WIL program cannot send keystrokes to its own WIL Interpreter window.

Notes:
You should, in general, use lower-case letters to represent Alt-key combinations
and other menu shortcut keys as that is the normal keys used when typing to
application. For example, "!fo" is interpreted as Alt-f-o, as one might expect.
However, "!FO" is interpreted as Alt-Shift-f-o, which is not a normal keystroke
sequence.

If your SendKey statement doesn't seem to be working (e.g., all you get are
beeping noises), you may need to place a WinActivate statement before the
SendKey statement to insure that you are sending the keystrokes to the correct
window, or you may try using the SendKeysTo or SendKeysChild function.

When sending keystrokes to a DOS box, the DOS box must be in a window (Not
Full Screen). Most keystrokes can be sent to a full screen DOS box, however,
SendKey can only send the ENTER key to a Windowed DOS Box.

The function IgnoreInput may be used to block user input during a sendkey
operation.

See Also:
IntControl 35, IgnoreInput, SendKeysTo, SendKeysChild, SendMenusTo, SnapShot,
WinActivate

SendKeysChild
Sends keystrokes to a child window.

Syntax:
SendKeysChild(parent-winname,child-winname,sendkey string)

Parameters:
(s) parent-winname the initial part of, or an entire parent window name.
(s) child-winname the initial part of, or an entire child window name.
(s) sendkey string string of regular and/or special characters.

Returns:
(i) @FALSE.

SendKeysTo

 561

Use this function to send keystrokes to a particular child window. This function is
similar to SendKey, but the desired parent and child windows will be activated
before sending any keys in lieu of using WinActiveChild. Consequently, a previous
WinActiveChild command will be overridden by this function. See the SendKey
function for a description of the "sendkey string".

Note: "main-winname" and "child-winname" are the initial parts of their respective
window names, and may be complete window names. They are case-sensitive. You
should specify enough characters so that the window names will match only one
existing window of its type. If a winname matches more than one window, the most
recently accessed window which it matches will be used.

The function IgnoreInput may be used to block user input during a sendkey
operation.

Example:
; Start Windows File Manager - the hard way
; This code activates Program Manager, then
; activates the "Main" child window. Sending an
; "f" should (hopefully) activate the File Manager
; icon. The Enter key (abbreviated as ~) runs it.
SendKeysChild("Program Manager", "Main", "f~")

See Also:
IntControl 35, IgnoreInput, SendKeysTo, SendKey, SendMenusTo, KeyToggleSet,
SnapShot, WinActivate

SendKeysTo
Sends keystrokes to a "parent-windowname".

Syntax:
SendKeysTo(parent-winname,sendkey string)

Parameters:
(s) parent-winname the initial part of, or an entire parent window name.
(s) sendkey string string of regular and /or special characters.

Returns:
(i) @FALSE.

Use this function to send keystrokes to a particular window. This function is similar
to SendKey, but the correct "parent-winname" will be activated before sending any
keys in lieu of using WinActivate. Consequently, a previous WinActivate
command will be overridden by this function. See the SendKey function for a
description of the "sendkey string". See SendKey for a list of keystroke equivalents.

Note: "parent-winname" is the initial part of a window name, and may be a complete
window name. It is case-sensitive. You should specify enough characters so that

SendMenusTo

562

"winname" matches only one existing window. If it matches more than one window,
the most recently accessed window which it matches will be used.

The function IgnoreInput may be used to block user input during a sendkey
operation.

Example:
run("notepad.exe","")
SendKeysTo("~Notepad", "aBcDeF")

See Also:
IntControl 35, IgnoreInput, SendKey, SendKeysChild, SendMenusTo,
KeyToggleSet, SnapShot, WinActivate

SendMenusTo
Activates a window and sends a specified menu option.

Syntax:
SendMenusTo(parent-winname,menuname)

Parameters:
(s) parent-winname the initial part of, or an entire parent window name.
(s) menuname menu item to be selected.

Returns:
(i) @FALSE.

Use this function to access drop down menus on a window. The function activates
the "winname" application window, searches its menus and sends the specified
windows message for the menu operation.

To construct the "menuname" parameter simply string together all the menu options
selected to access the desired function. All punctuation and special characters are
ignored, as well as any possible "hotkeys" used to access the function via the
keyboard. For example, most Windows applications have a "File" menu and an
"Open" menu. To construct the "menu name" parameter, simply string together the
words, making "FileOpen", or for better readability use "File Open" - the spaces are
ignored.

Note 1: "winname" is the initial part of a window name, and may be a complete
window name. It is case-sensitive. You should specify enough characters so that
"winname" matches only one existing window. If it matches more than one window,
the most recently accessed window which it matches will be used.

Note 2: SendMenusTo does not work with all applications. If you get a 'windows
menu not accessible' error, SendMenusTo will not work with that application. Use
SendKeysTo instead.

SendMessageW

 563

Example:
Run("notepad.exe", "c:\config.sys")
SendMenusTo("~Notepad", "Edit Select All")
SendMenusTo("~Notepad", "Edit Copy")

See Also:
SendKeysTo, SendKeysChild, SendKey, SnapShot

SendMessageA
Issues a Windows "SendMessage", with lParam as an ANSI string.

Syntax:
SendMessageA(window-id/handle,message-id,wParam,lParam)

Parameters:
(i) window-id/handle window id or handle to send to.
(i) message-id message ID number (in decimal).
(i) wParam wParam value (message-specific information).
(s) lParam lParam value (message-specific information

assumed to be a character string).

Returns:
(s) result of the message processing; it depends on the message

sent.

The lParam string is copied to a GMEM_LOWER buffer, and a LPSTR to the copied
string is passed as lParam. The GMEM_LOWER buffer is freed immediately upon
return from the SendMessageA.

Example:
; Send WM_SETTINGCHANGE to all top-level windows
; when they make changes to system parameters
HWND_BROADCAST = -1
WM_SETTINGCHANGE = 26
SendMessageA(HWND_BROADCAST, WM_SETTINGCHANGE, 0, "")

See Also:
RegSetValue, SendMessageW

SendMessageW
Issues a Windows "SendMessage", with lParam as a Unicode string. (Windows NT
and newer)

Syntax:
SendMessageW(window-id/handle,message-id,wParam,lParam)

ShellExecute

564

Parameters:
(i) window-id/handle window id or handle to send to.
(i) message-id message ID number (in decimal).
(i) wParam wParam value (message-specific information).
(s) lParam lParam value (message-specific information

assumed to be a Unicode string).

Returns:
(s) result of the message processing; it depends on the message

sent.

The lParam string is copied to a GMEM_LOWER buffer, and a LPSTR to the copied
string is passed as lParam. The GMEM_LOWER buffer is freed immediately upon
return from the SendMessageW.

Example:
; Send WM_SETTINGCHANGE to all top-level windows
; when they make changes to system parameters
HWND_BROADCAST = -1
WM_SETTINGCHANGE = 26
SendMessageW(HWND_BROADCAST, WM_SETTINGCHANGE, 0, "")

See Also:
RegSetValue, SendMessageA

ShellExecute
Runs a program via the Windows ShellExecute command

Syntax:
ShellExecute(program-name,params,directory,displaymode,operation)

Parameters:
(s) program-name the name of the desired .EXE, .COM, .PIF, .BAT file or a

data file.
(s) params optional parameters as required by the application.
(s) directory current working directory (if applicable).
(i) display mode @NORMAL, @ICON, @ZOOMED, @HIDDEN,

@NOACTIVATE or 0 for the default mode.
(i) operation operation to perform on the specified file.

Returns:
(i) @TRUE on success; @FALSE on failure.

This function uses the Windows ShellExecute API to launch the specified file. The
similar RunShell function also uses the ShellExecute API in the 16-bit version, but

ShortcutDir

 565

uses the CreateProcess API in the 32-bit version. Note that RunShell has a "wait"
parameter, while this function does not.

The @NOACTIVATE value causes the targeted application's window to be
displayed in its most recent size and position but without making the application's
window the active window when another top-level window is already active.

"operation" is the operation to perform on the file ("Open", "Print", etc.), which may
or may not correspond to an available "verb" on the context menu for the file. This
parameter may be case-sensitive. Specify a blank string "" for the file's default
operation.

Note: If you use this function to launch a shortcut, and the shortcut points to an
invalid path, Windows will display a "Missing Shortcut" dialog box asking if you
wish to update the shortcut. This would not be suitable to use in unattended
operation. Instead, you could use one of the Run functions to launch the shortcut,
which would return an error #1932 if the shortcut could not be launched. This error
can be trapped using the ErrorMode function.

Example:
; launches a shortcut to a "Dial-Up Networking" item on the desktop
startdir=ShortcutDir("Desktop",0,0)
ShellExecute(StrCat(startdir, "netcom.lnk"), "", "", @NORMAL, "")
WinWaitClose("Connect To")
Message("ShellExecute"," Executed.")

See Also:
RunShell

ShortcutDir
Gets the path of a folder identified by a name or CSIDL value.

Syntax:
ShortcutDir(name/CSIDL[,source[,add-slash]])

Parameters:
(s) name or CSIDL see list below.
(i) source [optional] flag which can under 'certain' circumstances

specify the location from which the information will be
retrieved. see below.

(i) add-slash [optional] if @TRUE, a backslash will be appended to the

returned string if it doesn't already have a trailing backslash.
The default is @FALSE.

Returns:
(s) a directory name on success; a blank string

("") if no corresponding value was found.

ShortcutDir

566

Name CSIDL Meaning
Desktop 0 CSIDL_DESKTOP Desktop (namespace root)
Programs 2 CSIDL_PROGRAMS Programs folder (under

Start menu in [user] profile)
Personal 5 CSIDL_PERSONAL Personal folder ([user]

profile)
Favorites 6 CSIDL_FAVORITES Favorites folder ([user]

profile)
Startup 7 CSIDL_STARTUP Startup folder ([user]

profile)
Recent 8 CSIDL_RECENT Recent folder

([user] profile)
SendTo 9 CSIDL_SENDTO SendTo folder ([user]

profile)
Start Menu 11 CSIDL_STARTMENU Start menu ([user]

profile)
My Music 13 CSIDL_MYMUSIC My Music ([user] profile)
My Video 14 CSIDL_MYVIDEO My Videos ([user] profile)
 16 CSIDL_DESKTOPDIRECTORY Desktop

folder ([user] profile)
NetHood 19 CSIDL_NETHOOD Network Neighborhood

directory
Fonts 20 CSIDL_FONTS Fonts virtual folder
Templates 21 CSIDL_TEMPLATES Templates folder ([user]

profile)
Common Start
Menu

22 CSIDL_COMMON_STARTMENU Start menu
(All Users profile)

Common
Programs

23 CSIDL_COMMON_PROGRAMS Programs
folder (under Start menu in All Users profile)

Common Startup 24 CSIDL_COMMON_STARTUP Startup folder
(All Users profile)

Common Desktop 25 CSIDL_COMMON_DESKTOPDIRECTORY
Desktop folder (All Users profile)

AppData 26 CSIDL_APPDATA Application Data ([user]
profile)

PrintHood 27 CSIDL_PRINTHOOD PrintHood folder ([user]
profile)

ShortcutDir

 567

Local AppData 28 CSIDL_LOCAL_APPDATA Local (non-
roaming) data repository for apps

 29 CSIDL_ALTSTARTUP Alternate Startup
([user], DBCS)

 30 CSIDL_COMMON_ALTSTARTUP Alternate
Startup folder (All Users profile, DBCS)

Common
Favorites

31 CSIDL_COMMON_FAVORITES Favorites
folder (All Users profile)

Cache 32 CSIDL_INTERNET_CACHE Internet Cache
folder

Cookies 33 CSIDL_COOKIES Cookies folder
History 34 CSIDL_HISTORY History folder
Common
AppData

35 CSIDL_COMMON_APPDATA Application
Data (All Users Profile)

 36 CSIDL_WINDOWS Windows directory or
SYSROOT

 37 CSIDL_SYSTEM System folder
 38 CSIDL_PROGRAM_FILES Program Files

folder
My Pictures 39 CSIDL_MYPICTURES My Pictures folder
 40 CSIDL_PROFILE Users profile folder
 41 CSIDL_SYSTEM System folder
 43 CSIDL_PROGRAMS_FILES_COMMON

Common files folder, e.g., C:\Program
Files\Common Files

Common
Templates

45 CSIDL_COMMON_TEMPLATES Templates
folder (All Users profile)

Common
Documents

46 CSIDL_COMMON_DOCUMENTS
Documents folder (All Users profile)

Common
Administrative
Tools

47 CSIDL_COMMON_ADMINTOOLS Admin
Tools folder (All Users profile)

Administrative
Tools

48 CSIDL_ADMINTOOLS Admin Tools folder

CommonMusic 53 CSIDL_COMMON_MUSIC My Music (All
Users profile)

CommonPictures 54 CSIDL_COMMON_PICTURES My Pictures
(All Users profile)

ShortcutEdit

568

CommonVideo 55 CSIDL_COMMON_VIDEO My Videos (All
Users profile)

 56 CSIDL_RESOURCES Windows resources
folder

CD Burning 59 CSIDL_CDBURN_AREA to CD. A typical
path is C:\Documents and
Settings\username\Local Settings\Application
Data\Microsoft\CD Burning.

For more examples of possible 'names', see the appropriate registry key.

Source [optional]

The source parameter is only used if a name string is specified. If a CSIDL code is
specified this parameter is ignored.

If the Name specified cannot be found, this flag specifies the registry location from
which the information will be retrieved:

Flag Location
0 Current user: HKEY_CURRENT_USER\Software\Microsoft\

Windows\CurrentVersion\Explorer\Shell Folders
1 All users:HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows\CurrentVersion\Explorer\Shell Folders

Example:
startdir=ShortcutDir("Desktop",0,0)
DirChange(startdir)
dest = StrCat(DirWindows(0),"notepad.exe")
ShortcutMake("mynotepad.lnk", dest, "", "", @NORMAL,0)
ShortcutEdit("mynotepad.lnk", "", "", startdir, @NORMAL,0)
exit

; Get Programs folder (under Start menu in [user] profile)
csidlcode = 2 ;CSIDL_PROGRAMS
progdir = ShortCutDir(csidlcode, 0, 0)
Message("Programs directory path", progdir)
exit

See Also:
ShortCutExtra, ShortcutInfo, ShortcutMake

ShortcutEdit
Modifies the specified shortcut file.

ShortcutEdit

 569

Syntax:
ShortcutEdit(link-name,target,params,start-dir,show-mode[,shortcut-type])

Parameters:
(s) link-name the name of shortcut .LNK file to be created.
(s) target file or directory name which "link-name" will point to.
(s) params optional command-line parameters for "target"
(s) start-dir "Start in" directory for "target".
(i) show-mode "Run" mode for "target": @NORMAL, @ZOOMED, or

@ICON.
(i) shortcut-type [optional] specifies the type of shortcut. see below.

Returns:
(i) @TRUE if the shortcut was successfully modified;

@FALSE if it wasn't.

"shortcut-type" specifies the type of shortcut, and can be one of the following:

Type Meaning
0 Normal shortcut (default)
1 Folder shortcut (Windows 2000 and newer)

You can specify "-1" for "target", "params", or "start-dir" to set NULL values.

See ShortcutMake for further information on these parameters.

Note: In the ShortcutMake and ShortcutEdit functions, if the "target" parameter
specifies a UNC, and it does not exist at the time this function is called, then the
"target" field in the shortcut may not be properly set. Specifically, it may get
truncated after the share name. For example, if you use:
ShortcutMake("test.lnk", "\\server\public\testdir\myprog.exe", "", "",
@normal,0)

and \\server\public\testdir\myprog.exe doesn't exist, then the target of the share may
get set to: \\server\public.

This is due to the behavior of the API function we are calling, and is consistent with
the behavior when trying to create or edit a shortcut interactively from Explorer (i.e.,
you are prevented from specifying an invalid target).

Example:
startdir=ShortcutDir("Desktop",0,0)
DirChange(startdir)
dest = StrCat(DirWindows(0),"notepad.exe")
ShortcutMake("mynotepad.lnk", dest, "", "", @NORMAL,0)
ShortcutEdit("mynotepad.lnk", "", "", startdir, @NORMAL,0)

See Also:
ShortCutExtra, ShortcutInfo, ShortcutMake

ShortcutExtra

570

ShortcutExtra
Sets additional information for the specified shortcut file.

Syntax:
ShortcutExtra(link-name,description,hotkey,icon-file,icon-index[,shortcut-type])

Parameters:
(s) link-name the name of shortcut .LNK file to be modified.
(s) description the internal description for the shortcut.
(s) hotkey the "shortcut key" to be assigned to the shortcut.
(s) icon-file a file containing an icon to be used for the shortcut, with

optional path.
(i) icon-index the 0-based index position of the desired icon within "icon-

file".
(i) shortcut-type [optional] specifies the type of shortcut. see below

Returns:
(i) @TRUE if the shortcut was successfully modified;

@FALSE if it wasn't.

"shortcut-type" specifies the type of shortcut, and can be one of the following:

Type Meaning
0 Normal shortcut (default)
1 Folder shortcut (Windows 2000 and newer)

You can specify "-1" for "description", "hotkey", or "icon-file" to set NULL values.
The "description" parameter only sets an internal description, which is not actually
displayed anywhere.

If "hotkey" is not a blank string (""), it specifies the hotkey ("shortcut key") for the
shortcut. This can be an alphanumeric or special character (see below), optionally
preceded by one or more of the following modifiers:

 ! (Alt)
 ^ (Control)
 + (Shift)

This function can be used to set hotkeys which would be impossible to set from
within the shortcut properties dialog in Explorer. Note: some key combinations may
not be supported on all Windows platforms.

List of special keys for ShortcutExtra:

{BACKSPACE} {BS} {F13}
{CLEAR} {DELETE} {F14}
{DEL} {DOWN} {F15}
{END} {ENTER} {F16}

ShortcutInfo

 571

{ESCAPE} {ESC}
{HOME} {HELP}
{INS} {INSERT}
{NUMPAD*} {LEFT}
{NUMPAD-} {NUMPAD+}
{NUMPAD/} {NUMPAD.}
{NUMPAD1} {NUMPAD0}
{NUMPAD3} {NUMPAD2}
{NUMPAD5} {NUMPAD4}
{NUMPAD7} {NUMPAD6}
{NUMPAD9} {NUMPAD8}
{PGUP} {PGDN}
{RIGHT} {PRTSC}
{SP} {SPACE}
{UP} {TAB}
{F1} {F7}
{F2} {F8}
{F3} {F9}
{F4} {F10}
{F5} {F11}
{F6} {F12}

"Icon-file" can be used to specify an .EXE (or .DLL) file or an .ICO file containing
an icon which you want to be used for the shortcut. If "icon-file" specifies an .EXE
(or .DLL) file (which can contain multiple icons), then "icon-index" can be used to
specify the offset of a particular icon within "icon-file", where 0 indicates the first
icon in the file, 1 indicates the second icon, etc. If "icon-file" specifies an .ICO file,
then "icon-index" should be 0.

You can specify a blank string ("") for "icon-file", and 0 for "icon-index", to use the
default icon.

Example:
startdir=ShortcutDir("Desktop",0,0)
DirChange(startdir)
dest = StrCat(DirWindows(0),"notepad.exe")
ShortcutMake("mynotepad.lnk", dest, "", "", @NORMAL,0)
ShortcutEdit("mynotepad.lnk", "", "", startdir, @NORMAL,0)
ShortcutExtra("mynotepad.lnk", "Notepad shortcut", "^!n", "", 0,0)

See Also:
ShortcutEdit, ShortcutInfo, ShortcutMake

ShortcutInfo
Returns information on the specified shortcut file.

ShortcutInfo

572

Syntax:
ShortcutInfo(link-name[, shortcut-type])

Parameters:
(s) link-name the name of shortcut .LNK file.
(i) shortcut type [optional] specifies the type of shortcut. see below.

Returns:
(s) a TAB delimited list of information on the shortcut file.

ShortcutInfo returns a TAB-delimited list containing the following items (some of
which may be blank):

target file or directory name which the shortcut points to.
params command-line parameters for "target".
start-dir "Start in" directory for "target".
show-mode "Run" mode for "target": 1 (@ICON), 2 (@NORMAL), or

3 (@ZOOMED).
description the internal description for the shortcut.
hotkey the "shortcut key" for the shortcut.
icon-file the name of the icon file being used by the shortcut.
icon-index the 0-based index position within "icon-file" of the icon

being used.
"shortcut-type" specifies the type of shortcut, and can be one of the following:

Type Meaning
0 Normal shortcut (default)
1 Folder shortcut (Windows 2000 and newer)

Example:
startdir=ShortcutDir("Desktop",0,0)
DirChange(startdir)
dest = StrCat(DirWindows(0),"notepad.exe")
ShortcutMake("mynotepad.lnk", dest, "", "", @NORMAL,0)
ShortcutEdit("mynotepad.lnk", "", "", startdir, @NORMAL,0)
ShortcutExtra("mynotepad.lnk", "Notepad shortcut", "^!n", "", 0,0)
info=ShortcutInfo("mynotepad.lnk")

target= ItemExtract(1, info, @tab)
params= ItemExtract(2, info, @tab)
workdir= ItemExtract(3, info, @tab)
showmode= ItemExtract(4, info, @tab)
desc= ItemExtract(5, info, @tab)
hotkey= ItemExtract(6, info, @tab)
iconfile= ItemExtract(7, info, @tab)
iconindex= ItemExtract(8, info, @tab)
editinfo=StrCat("filename=",target,@crlf,"params=",params,@crlf,
 "workdir=",workdir,@crlf,"showmode=",showmode)
extrainfo=StrCat("desc=",desc,@crlf,"hotkey=",hotkey,@crlf,

ShortcutMake

 573

 "iconfile=", iconfile,@crlf,"iconindex=",iconindex)
Message("ShortcutInfo Syntax", StrCat(editinfo,@crlf, extrainfo))

See Also:
ShortcutEdit, ShortCutExtra, ShortcutMake

ShortcutMake
Creates a shortcut for the specified filename or directory.

Syntax:
ShortcutMake(link-name,target,params,start-dir,show-mode[,shortcut-type])

Parameters:
(s) link-name the name of shortcut .LNK file to be created.
(s) target file or directory name which "link-name" will point to.
(s) params command-line parameters for "target" or NULL string.
(s) start-dir "Start in" directory for "target".
(i) show-mode "Run" mode for "target": 1 (@ICON), 2 (@NORMAL), or

3 (@ZOOMED).
(i) shortcut type [optional] specifies the type of shortcut. see below.

Returns:
(i) @TRUE if the shortcut was successfully created;

@FALSE if it wasn't.

This function can be used to create a shortcut file which points to a filename or to a
directory.

"Link-name" the name of shortcut to be created. For a file shortcut you should
specify the {filename}.LNK. For a directory shortcut specify just the name of the
shortcut. For Example, to create a directory shortcut:
ShortcutMake("Test", "\\server\public\testdir\", "", "", @normal,1)

"Params" and "start-dir" are optional, and can be set to blank strings (""). "Show-
mode" is optional, and can be set to 0.

If "target" specifies a directory, the other parameters are meaningless.

Note: In the ShortcutMake and ShortcutEdit functions, if the "target" parameter
specifies a UNC, and it does not exist at the time this function is called, then the
"target" field in the shortcut may not be properly set. Specifically, it may get
truncated after the share name. For example, if you use:
ShortcutMake("test.lnk", "\\server\public\testdir\myprog.exe", "",
"", @normal,0)

and \\server\public\testdir\myprog.exe doesn't exist, then the target of the share may
get set to: \\server\public.

Sinh

574

This is due to the behavior of the API function we are calling, and is consistent with
the behavior when trying to create or edit a shortcut interactively from Explorer (i.e.,
you are prevented from specifying an invalid target).

"shortcut-type" specifies the type of shortcut, and can be one of the following:

Type Meaning
0 Normal shortcut (default)
1 Folder shortcut (Windows 2000 and newer)

Example:
dest = StrCat(DirWindows(0),"notepad.exe")
ShortcutMake("mynotepad.lnk", dest, "", "", @NORMAL,0)

See Also:
ShortcutEdit, ShortCutExtra, ShortcutInfo

Sin
Calculates the sine.

Syntax:
Sin(x)

Parameters:
(f) x angle in radians.

Returns:
(f) The Sin function returns the sine of x.

Calculates the sine. If the passed parameter is large, a loss in significance in the
result or significance error may occur.

Note: To convert an angle measured in degrees to radians, simply multiply by the
constant @Deg2Rad.

Example:
real=AskLine("Sine", "Enter an angle between 0 and 360", "45", 0)
answer=sin(real * @Deg2Rad)
Message("Sine of %real% degrees is", answer)

See Also:
Acos, Asin, Atan, Cos, Tan, Sinh

Sinh
Calculates the hyperbolic sine.

SnapShot

 575

Syntax:
Sinh(x)

Parameters:
(f) x angle in radians.

Returns:
(f) the hyperbolic sine of x.

Calculates the hyperbolic sine. If the passed parameter is large, a loss in significance
in the result or significance error may occur.

Note: To convert an angle measured in degrees to radians, simply multiply by the
constant @Deg2Rad.

Example:
real=AskLine("SinH", "Enter an angle between 0 and 360", "45", 0)
answer=sinh(real * @Deg2Rad)
Message("Hyperbolic Sine of %real% degrees is", answer)

See Also:
Acos, Asin, Atan, Cos, Cosh, Sin, Tan, Tanh

SnapShot
Takes a bitmap snapshot of the screen and pastes it to the clipboard.

Syntax:
SnapShot(request#)

Parameters:
(i) request# see below.

Returns:
(i) @FALSE.

Req# Meaning
0 Take snapshot of entire screen
1 Take snapshot of client area of parent window of active window
2 Take snapshot of entire area of parent window of active window
3 Take snapshot of client area of active window
4 Take snapshot of entire area of active window
5 Take snapshot of entire virtual screen (Windows 98+) On versions of

Windows, that do not support virtual screens, this will be treated the
same as request 0.

This function supports multi-monitor systems.

Sounds

576

Example:
;Takes a bitmap snapshot of the screen and pastes it to the
clipboard.
Snapshot(0)
;returns the size of buffer needed for a subsequent BinaryAlloc,
;but doesn't attempt to place the contents of clipboard into a buffer
size=BinaryClipGet(0,8)
;allocates a data buffer
bb=BinaryAlloc(size)
;read file format type CF_DIB
BinaryClipGet(bb,8)
; need to add first 14 bytes to make it
; a BMP file format
bmpdatasize=14
bb2=BinaryAlloc(size + bmpdatasize)
;The characters identifying the bitmap.'BM'
BinaryPokeStr(bb2, 0, "BM")
;Complete file size in bytes.
BinaryPoke4(bb2,2,size + bmpdatasize)
;Reserved
BinaryPoke4(bb2,6,0)
;Data offset
headersize=BinaryPeek4(bb,0)
dataoffset = headersize + bmpdatasize
BinaryPoke4(bb2,10,dataoffset)
BinaryCopy(bb2,bmpdatasize,bb,0,size)
BinaryWrite(bb2,"c:\temp\screenshot.bmp")
BinaryFree(bb)
BinaryFree(bb2)
Message("All","Done")

See Also:
ClipPut

Sounds
Controls sound effects generated by WIL. This feature is off by default as windows
generally supplies its own sound effects.

Syntax:
Sounds(request#)

Parameters:
(i) request# 0 to turn sounds off; 1 to turn sounds on.

Returns:
(i) previous Sound setting.

If Windows multimedia sound extensions are present, this function turns sounds
made by the WIL Interpreter on or off. Specify a request# of 0 to turn sounds off,
and a request# of 1 to turn them on.

Sqrt

 577

Example:
Sounds(1)
Message("Sounds"," Sounded.")

See Also:
Beep, PlayMedia, PlayMidi, PlayWaveForm

SoundVolume
Sets the speaker volume.

Syntax:
SoundVolume(level)

Parameters:
(i) level specifies the volume level, from 0 (min) to 100 (max).

specify -1 to get the current volume setting.

Returns:
(i) if level 0 to 100 it returns previous volume level.

if level is -1 it returns the current volume level.

Example:
Sounds(1)
currentlevel = SoundVolume (-1)
Message("SoundVolume - Current level", currentlevel)
;lower volume 10%
level = SoundVolume (currentlevel -10)
Message("SoundVolume - Sound lowered 10%%", currentlevel -10)
;Set back to original volume
SoundVolume (currentlevel)

See Also:
Sounds, Beep, PlayMedia PlayMidi, PlayWaveForm

Sqrt
Calculates the square root.

Syntax:
Sqrt(x)

Parameters:
(f) x floating point number.

Returns:
(f) the square root result.

The Sqrt function calculates the square root of the passed parameter. If the passed
parameter is negative, a domain error occurs.

StrCat

578

Example:
real=AskLine("Square Root", "Enter a positive number", "269", 0)
answer=sqrt(real)
Message("Square root of %real% is", answer)

See Also:
Operator ** (the power operator)

StrByteCount
Returns the length of a string, in bytes.

Syntax:
StrByteCount(string,request)

Parameters:
(s) string specifies an ANSI or Unicode string.
(i) request specifies how "string" should be treated in order to calculate

its length.

Returns:
(i) the length of a string, in bytes.

Request Meaning
-1 current format (ANSI or Unicode)
0 ANSI string (including double-byte ANSI character sets)
1 Unicode string

Example:
myname = AskLine("Firstname", "Enter your first name:", "", 0)
numbytes = StrByteCount(myname, -1)
Message("Number of bytes in first name", numbytes)

See Also:
StrLen

StrCat
Concatenates two or more strings.

Syntax:
StrCat(string1,string2[,...,stringN])

Parameters:
(s) string1, etc. at least two strings you want to concatenate.

Returns:
(s) concatenation of the entire list of input strings.

StrCharCount

 579

Use this command to stick character strings together, or to format display messages.
Although the substitution feature of the WIL (putting percent signs on both side of a
variable name) is a little quicker and easier than the strcat function, substitution
should only be used for simple, short cases. Use StrCat when concatenating large
strings.

Note: The ':' string concatenation operator can also concatenate two strings (or values
which can be converted to strings). For example:
 Message("Windows version", WinVersion(1) : "." : WinVersion(0))

StrCat allows a maximum of 1024 parameters.

Example:
user = AskLine("Login", "Your Name:", "", 0)
msg = StrCat("Hi, ", user)
Message("Login", msg)
; note that this is the same as the second line above:
msg = "Hi, %user%"

See Also:
StrFill, StrFix, StrTrim

StrCharCount
Counts the number of characters in a string.

Syntax:
StrCharCount(string)

Parameters:
(s) string any text string.

Returns:
(i) the number of characters in a string,

Use this function to count the number of characters in a string. This function is
useful when dealing with double-byte character sets such as those containing Kanji
characters. When using single byte character sets, such as those found in English
versions of Windows, this function is identical to the StrLen function.

Example:
name = AskLine("Data Entry", "Please enter your name", "", 0)
len = StrLen(name)
chars = StrCharCount(name)
Message(name, "Is %len% bytes long and %@CRLF% has %chars%
 characters")

See Also:
StrLen, StrByteCount, StrScan, StrReplace, StrFill

StrClean

580

StrClean
Removes or replaces characters in a string.

Syntax:
StrClean(source-string,characters,replacement,match-case,mode)

Parameters:
(s) source-string the string to be operated upon.
(s) characters a string that specifies the characters in "source-string" to be

replaced or retained.
(s) replacement the replacement string to be inserted in place of matching

(or non-matching) characters.
(i) match-case @TRUE or @FALSE, indicating whether string

comparisons are case-sensitive or case-insensitive,
respectively.

(i) mode see below.

Returns:
(s) the new string, with all changes made. The original string

("source-string") is untouched.

"characters" is a string that specifies the characters in "source-string" to be replaced
or retained. This parameter can be a single character (e.g., "x"), a list of characters
(e.g., "~!@#"), or a blank string ("").

"replacement" specifies the replacement string to be inserted in place of matching (or
non-matching) characters. It can be a string, one or more characters long. It can also
be a blank string (""), in which case matching characters are removed.

"mode" can be one of the following:

Value Meaning
1 Replace all occurrences of "characters" with "replacement"
2 Replace all non-occurrences of "characters" with "replacement"

This function can be used to remove or replace specific characters in a string, or to
retain only specific characters in a string.

If "mode" is 1, then any characters which appear in "characters" will be replaced
with "replacement". If "replacement" is a blank string, then any characters which
appear in "characters" will be removed. If "characters" is a blank string, then no
changes will be made.

If "mode" is 2, then any characters which DON'T appear in "characters" will be
replaced with "replacement". If "replacement" is a blank string, then any characters
which DON'T appear in "characters" will be removed. If "characters" is a blank
string, then ALL characters will be replaced.

StrCnt

 581

Example:
; Remove all spaces from a string
StrClean("Have a nice day", " ", "", @FALSE, 1)

; Replace all ampersands with the HTML code "&"
StrClean("Here & there & everywhere", "&", "&", @FALSE, 1)

; Remove all characters other then letters and spaces
StrClean("Healthy, wealthy, & wise.", "abcdefghijklmnopqrstuvwxyz ",
"", @FALSE, 2)

See Also:
StrReplace, ItemReplace

StrCmp
Compares two strings.

Syntax:
StrCmp(string1,string2)

Parameters:
(s) string1,string2 strings to compare.

Returns:
(i) -1, 0, or 1; depending on whether string1 is less than, equal

to, or greater than string2, respectively.

Use this command to determine whether two strings are equal, or which precedes the
other in an ANSI sorting sequence.

Example:
a = AskLine("STRCMP", "Enter a test line", "", 0)
b = AskLine("STRCMP", "Enter another test line", "", 0)
c = StrCmp(a, b)
c = c + 1
d = StrSub("less than equal to greater than", (c * 12)+ 1, 12)
; Note that above string is grouped into 12-character chunks.
; Desired chunk is removed with the StrSub statement.
Message("STRCMP", "%a% is %d% %b%")

See Also:
StriCmp, StrIndex, StrLen, StrScan, StrSub

StrCnt
Counts the occurrences of a substring within a string.

Syntax:
StrCnt(string,sub-string,start-pos,end-pos,flags)

StrFill

582

Parameters:
(s) string specifies the main string.

(s) sub-string specifies the substring to search for within "string".

(i) start-pos specifies the position in "string" at which to begin

searching, or -1 to indicate the end of the string. The
first character of the string is at position 1.

(i) end-pos specifies the position in "string" at which to end

searching, or -1 to indicate the end of the string. The
first character of the string is at position 1. Note that if
the string begins at or before "end-pos" and continues
past "end-pos", it will be counted.

(i) flags can be set to 0, or can specify one or more of the

following values combined with the bitwise OR ('|')
operator:
Value Meaning
1 match case

Returns:
(i) number of occurrences.

Example:
str = "How many I's are in this string?"
rslt = StrCnt(str, "i", 1, -1, 0)
Message("STRCNT - number of occurrences of the letter i", rslt)

See Also:
StriCmp, StrIndex, StrLen, StrScan, StrSub

StrFill
Creates a string filled with a series of characters.

Syntax:
StrFill(filler,length)

Parameters:
(s) filler a string to be repeated to create the return string. If the filler

string is null, spaces will be used instead.
(i) length the length of the desired string.

Returns:
(s) character string.

StrFix

 583

Use this function to create a string consisting of multiple copies of the filler string
concatenated together.

Example:
Message("My Stars", StrFill("*", 30))

which produces…

See Also:
StrCat, StrFix, StrLen, StrTrim

StrFix
Pads or truncates a string to a fixed length using characters.

Syntax:
StrFix(base-string,pad-string,length)

Parameters:
(s) base-string string to be adjusted to a fixed length.
(s) pad-string appended to base-string if needed to fill out the

desired length. If pad-string is null, spaces are
used instead.

(i) length character count of the string.

Returns:
(s) fixed size string.

This function is identical to StrFixChars function. This function "fixes" the length
of a string, either by truncating it on the right, or by appending enough copies of pad-
string to achieve the desired length.

Example:
a = StrFix("Henry", " ", 15)
b = StrFix("Betty", " ", 15)

StrFixBytes

584

c = StrFix("George", " ", 15)
Message("Spaced Names", StrCat(a, b, c))

which produces…

See Also:
StrFixBytes, StrFixBytesL, StrFixChars, StrFixCharsL, StrFixLeft, StrFill, StrLen,
StrTrim

StrFixBytes
Pads or truncates a string to a fixed length using bytes.

Syntax:
StrFixBytes(base-string,pad-string,length)

Parameters:
(s) base-string string to be adjusted to a fixed length.
(s) pad-string appended to base-string if needed to fill out the

desired length. If pad-string is null, spaces are
used instead.

(i) length specifies length in bytes.

Returns:
(s) fixed size string.

This function "fixes" the length of a string, either by truncating it on the right, or by
appending enough copies of pad-string to achieve the desired length.

If either 'base-string' or 'pad-string' is a Unicode string, then 'length' must be an even
number (each character has two bytes).

Example:
a = StrFixBytes ("Henry", " ", 15)
b = StrFixBytes ("Betty", " ", 15)
c = StrFixBytes ("George", " ", 15)
Message("Spaced Names", StrCat(a, b, c))

StrFixChars

 585

See Also:
StrFix, StrFixBytesL, StrFixChars, StrFixCharsL, StrFixLeft, StrFill, StrLen,
StrTrim

StrFixBytesL
Pads or truncates the left side of a string to a fixed length using bytes.

Syntax:
StrFixBytesL(base-string,pad-string,length)

Parameters:
(s) base-string string to be adjusted to a fixed length.
(s) pad-string appended to base-string if needed to fill out

the desired length. If pad-string is null, spaces
are used instead.

(i) length specifies the length in bytes.

Returns:
(s) fixed size string.

If either 'base-string' or 'pad-string' is a Unicode string, then 'length' must be an even
number (each character has two bytes).

Example:
a = StrFixBytesL("Henry", " ", 15)
b = StrFixBytesL ("Betty", " ", 15)
c = StrFixBytesL ("George", " ", 15)
Message("Spaced Names", StrCat(a, b, c))

See Also:
StrFix, StrFixBytes, StrFixChars, StrFixCharsL, StrFixLeft, StrFill, StrLen, StrTrim

StrFixChars
Pads or truncates a string to a fixed length using characters.

Syntax:
StrFixChars(base-string,pad-string,length)

Parameters:
(s) base-string string to be adjusted to a fixed length.
(s) pad-string appended to base-string if needed to fill out

the desired length. If pad-string is null, spaces
are used instead.

(i) length character count of the string.

StrFixLeft

586

Returns:
(s) fixed size string.

This function is identical to StrFix in that it "fixes" the length of a string, either by
truncating it on the right, or by appending enough copies of pad-string to achieve the
desired length

Example:
a = StrFixChars("Henry", " ", 15)
b = StrFixChars("Betty", " ", 15)
c = StrFixChars("George", " ", 15)
Message("Spaced Names", StrCat(a, b, c))

See Also:
StrFix, StrFixBytes, StrFixBytesL, StrFixCharsL, StrFixLeft, StrFill

StrFixCharsL
Pads or truncates the left side of a string to a fixed length using characters.

Syntax:
StrFixCharsL(base-string,pad-string,length)

Parameters:
(s) base-string string to be adjusted to a fixed length.
(s) pad-string appended to base-string if needed to fill out the desired

length. If pad-string is null, spaces are used instead.
(i) length character count of the string.

Returns:
(s) fixed size string.

This function is indentical to StrFixLeft. It "fixes" the length of a string, either by
truncating it on the left, or by prepending enough copies of pad-string to achieve the
desired length.

Example:
a = StrFixCharsL("Henry", " ", 15)
b = StrFixCharsL("Betty", " ", 15)
c = StrFixCharsL("George", " ", 15)
Message("Spaced Names", StrCat(a, b, c))

See Also:
StrFix, StrFixBytes, StrFixBytesL, StrFixChars, StrFixLeft, StrFill, StrLen, StrTrim

StrFixLeft
Pads or truncates the left side of a string to a fixed length using characters.

StriCmp

 587

Syntax:
StrFixLeft(base-string,pad-string,length)

Parameters:
(s) base-string string to be adjusted to a fixed length.
(s) pad-string appended to base-string if needed to fill out the desired

length. If pad-string is null, spaces are used instead.
(i) length character count of the string.

Returns:
(s) fixed size string.

This function is identical to StrFixCharsL. This function "fixes" the length of a
string, either by truncating it on the left, or by prepending enough copies of pad-
string to achieve the desired length.

Example:
a = StrFixLeft("Henry", " ", 15)
b = StrFixLeft("Betty", " ", 15)
c = StrFixLeft("George", " ", 15)
Message("Spaced Names", StrCat(a, b, c))

See Also:
StrFix, StrFixBytes, StrFixBytesL, StrFixChars, StrFixCharsL, StrFill, StrLen,
StrTrim

StriCmp
Compares two strings without regard to case.

Syntax:
StriCmp(string1,string2)

Parameters:
(s) string1,string2 strings to compare.

Returns:
(i) -1, 0, or 1; depending on whether string1 is less than, equal

to, or greater than string2, respectively.

Use this command to determine whether two strings are equal, or which precedes the
other in an ANSI sorting sequence, when case is ignored.

Example:
a = AskLine("STRICMP", "Enter a test line", "", 0)
b = AskLine("STRICMP", "Enter another test line", "", 0)
c = StriCmp(a, b)
c = c + 1
d = StrSub("less than equal to greater than", (c * 12)+ 1, 12)
; Note that above string is grouped into 12-character chunks.

StrIndex

588

; Desired chunk is removed with the StrSub statement.
Message("STRICMP", "%a% is %d% %b%")

See Also:
StrCmp, StrIndex, StrLen, StrScan, StrSub

StrIndex
Searches a string for a sub-string.

Syntax:
StrIndex(string,sub-string,start,direction)

Parameters:
(s) string the string to be searched for a sub-string.
(s) sub-string the string to look for within the main string.
(i) start the position in the main string to begin search. The first

character of a string is position 1.
(i) direction the search direction. @FWDSCAN searches forward, while

@BACKSCAN searches backwards.

Returns:
(i) position of sub-string within string, or 0 if not found.

This function searches for a sub-string within a "target" string. Starting at the "start"
position, it goes forward or backward depending on the value of the "direction"
parameter. It stops when it finds the "sub-string" within the "target" string, and
returns its position.

A start position of 0 has special meaning depending on which direction you are
scanning. For forward searches, zero indicates the search should start at the
beginning of the string. For reverse searches, zero causes it to start at the end of the
string.

If the sub-string is a blank (NULL) string and the specified start position is ZERO,
this function returns the start position of the string for a @FWDSCAN search and the
position of the last item for a @BACKSCAN search.

If both the string and the sub-string are blank (NULL) strings this function
returns zero.

Example:
instr = AskLine("STRINDEX", "Type a sentence:", "", 0)
start = 1
daend = StrIndex(instr, " ", start, @FWDSCAN)
If daend == 0
 Message("Sorry...", "No spaces found")
else
 a = StrCat("First word is: ", StrSub(instr, start, daend - 1))

StrIndexNc

 589

 Message("STRINDEX", a)
endif

See Also:
StrLen, StrScan, StrSub

StrIndexNc
Searches a string for a sub-string, ignoring case.

Syntax:
StrIndexNc(string,sub-string,start,direction)

Parameters:
(s) string the string to be searched for a sub-string.
(s) sub-string the string to look for within the main string.
(i) start the position in the main string to begin search. The first

character of a string is position 1.
(i) direction the search direction. @FWDSCAN searches forward, while

@BACKSCAN searches backwards.

Returns:
(i) position of sub-string within string, or 0 if not found.

This function searches for a sub-string within a "target" string. Starting at the "start"
position, it goes forward or backward depending on the value of the "direction"
parameter. It stops when it finds the "sub-string" within the "target" string, and
returns its position. It is not case-sensitive.

A start position of 0 has special meaning depending on which direction you are
scanning. For forward searches, zero indicates the search should start at the
beginning of the string. For reverse searches, zero causes it to start at the end of the
string.

If the sub-string is a blank (NULL) string and the specified start position is ZERO,
this function returns the start position of the string for an @FWDSCAN search and
the position of the last item for a @BACKSCAN search.

If both the string and the sub-string are blank (NULL) strings this function
returns zero.

Example:
instr = AskLine("STRINDEX", "Type a sentence:", "", 0)
start = 1
daend = StrIndexNc(instr, " ", start, @FWDSCAN)
If daend == 0
 Message("Sorry...", "No spaces found")
else
 a = StrCat("First word is: ", StrSub(instr, start, daend - 1))

StrInsert

590

 Message("STRINDEX", a)
endif

See Also:
StrIndex, StrIndexWild, StrLen, StrScan, StrSub

StrIndexWild
Finds wildcarded text within a larger string.

Syntax:
StrIndexWild(string,pattern,start)

Parameters:
(s) string the string to be searched for a sub-string.
(s) pattern the wildcarded text to search for.
(i) start the position in the main string to begin search.

The first character of a string is position 1.

Returns:
(i) position of sub-string within string, or 0 if not found.

In the wildcard pattern, "*" matches zero or more characters, and "?" matches any
one character.

If the pattern is a blank (NULL) string, and the specified start position is ZERO, this
function returns the start position of the string.

If both the string and the pattern are blank (NULL) strings, this function
returns zero.

Example:
StrIndexWild("abcd1234wxyz", "ab*wx", 1) ; would return 1
StrIndexWild("abcd1234wxyz", "1*9", 1) ; would return 0(no match)
StrIndexWild("abcd1234wxyz", "1*4", 1) ; would return 5
StrIndexWild("abcd1234wxyz", "1?34*z", 1) ; would return 5

See Also:
StrIndex, StrIndexNC, StrLen, StrScan, StrSub

StrInsert
Inserts a new string into an existing string. (Windows NT and newer)

Syntax:
StrInsert(base-string,new-string,[pad-string[,start[,length]]])

Parameters:
(s) base-string specifies the existing string.

StrLen

 591

(s) new-string specifies the string to be inserted into "base-string".
(s) pad-string [optional] specifies a character or string to be used for

padding, if necessary. The default is a space (' ').
(i) start [optional] specifies the position in "base-string" before

which "new-string" is to be inserted, where the position of
the first character of the string is 1. To insert at the very
beginning of "base-string", specify a value of 1. You can
specify -1 to insert after the end of "base-string". If "start"
is past the end of "base-string", padding will be inserted
between the end of "base-string" and the beginning of "new-
string". The default is 1.

(i) length [optional] specifies the number of characters to insert. If
"length" is shorter than the length of "new-string", "new-
string" will be truncated. If "length" is longer than the
length of "new-string", padding will be inserted after the
end of "new-string". The default is the length of "new-
string".

Returns:
(s) the modified string.

Example:
Name = "Joe"
ret = StrInsert("Hello my name is ",name," ",-1,StrLen(name))
Message("StrInsert() Example", ret)

See Also:
StrCharCount, StrByteCount, StrFill, StrFix, StrIndex, StrIndexNc, StrOverlay,
StrScan, StrTrim

StrLen
Provides the number of characters in a string.

Syntax:
StrLen(string)

Parameters:
(s) string any text string.

Returns:
(i) number of characters in a string.

Example:
myfile = AskLine("Filename", "File to process:", "", 0)
namlen = StrLen(myfile)
If namlen > 13
 Message("Error", "Filename too long!")
endif

StrLower

592

See Also:
StrCharCount, StrByteCount, StrFill, StrFix, StrIndex, StrIndexNC, StrScan, StrTrim

StrLenWild
Finds wildcarded text within a larger string.

Syntax:
StrLenWild(string,pattern,start)

Parameters:
(s) string any text string.
(s) pattern The wildcarded text to match.
(i) start The position (in characters) within the string to begin

matching.

Returns:
(i) the length (in characters) of the portion of the string that

matches the wildcard pattern, or 0 if no match at the
specified position.

In the wildcard pattern, "*" matches zero or more characters, and "?" matches any
one character.

Example:
StrLenWild("abcd1234wxyz", "ab*wx", 1) ; would return 10
StrLenWild("abcd1234wxyz", "1*9", 1) ; would return 0
StrLenWild("abcd1234wxyz", "1*4", 5) ; would return 4
StrLenWild("abcd1234wxyz", "1?34*z", 5) ; would return 8

See Also:
StrFill, StrLen, StrFix, StrIndex, StrIndexNc, StrScan, StrTrim

StrLower
Converts a string to lowercase.

Syntax:
StrLower(string)

Parameters:
(s) string any text string.

Returns:
(s) lowercase string.

Use this command to convert a text string to lower case.

StrOverlay

 593

Example:
a = AskLine("STRLOWER", "Enter text", "", 0)
b = StrLower(a)
Message(a, b)

See Also:
StriCmp, StrUpper

StrOverlay
Overlays a new string onto an existing string. (Windows NT and newer)

Syntax:
StrOverlay(base-string,new-string,[pad-string[,start[,length]]])

Parameters:
(s) base-string specifies the existing string.
(s) new-string specifies the string to be overlaid onto "base-string".
(s) pad-string [optional] specifies a character or string to be used for

padding, if necessary. The default is a space (' ').
(i) start [optional] specifies the position in "base-string" after which

"new-string" is to be overlaid, where the position of the first
character of the string is 1. You can specify -1 to overlay
after the end of "base-string". If "start" is past the end of
"base-string", padding will be inserted between the end of
"base-string" and the beginning of "new-string". The
default is 1.

(i) length [optional] specifies the number of characters to overlay. If
"length" is shorter than the length of "new-string", "new-
string" will be truncated. If "length" is longer than the
length of "new-string", padding will be overlaid after the
end of "new-string". The default is the length of "new-
string".

Returns:
(s) the modified string.

Example:
Name = "Joe"
ret = StrOverlay("Hello my name is ", name, " ", -1, StrLen(name))
Message("StrOverlay() Example", ret)

See Also:
StrCharCount, StrByteCount, StrFill, StrFix, StrIndex, StrInsert, StrIndexNc,
StrScan, StrTrim

StrScan

594

StrReplace
Replaces all occurrences of a sub-string with another.

Syntax:
StrReplace(string,old,new)

Parameters:
(s) string string in which to search.
(s) old target sub-string.
(s) new replacement sub-string.

Returns:
(s) updated string, with old replaced by new.

StrReplace scans the "string", searching for occurrences of "old" and replacing each
occurrence with "new".

Example:
; Copy all INI files to clipboard
a = FileItemize("*.ini")
;in file list replace tabs with crlf's.
b = StrReplace(a, @tab, @CRLF)
ClipPut(b)
newlist=StrCat("Before", @CRLF, a,@CRLF,@CRLF,"After", @CRLF, b)
Message("StrReplace",newlist)

See Also:
StrIndex, StrIndexNC, StrIndexWild, StrScan, StrSub

StrScan
Searches string for occurrence of delimiters.

Syntax:
StrScan(string,delimiters,start,direction)

Parameters:
(s) string the string that is to be searched.
(s) delimiters a string of delimiters to search for within string.
(i) start the position in the main string to begin search. The first

character of a string is position 1.
(i) direction the search direction. @FWDSCAN searches forward, while

@BACKSCAN searches backwards.

Returns:
(i) position of delimiter in string, or 0 if not found.

This function searches for delimiters within a target "string". Starting at the "start"
position, it goes forward or backward depending on the value of the "direction"

StrSub

 595

parameter. It stops when it finds any one of the characters in the "delimiters" string
within the target "string".

A start position of 0 has special meaning depending on which direction you are
scanning. For forward searches, zero indicates the search should start at the
beginning of the string. For reverse searches, zero causes it to start at the end of the
string.

Example:
; Parse a string with multiple delimiters into standard param format
thestr = "123,456.789:abc"
length=StrLen(thestr)
start = 1
count=0
while @TRUE
 finish = StrScan(thestr, ",.:", start, @FWDSCAN)
 If finish == 0
 break
 else
 count = count+1
 param%count% = StrSub(thestr, start, finish - start)
 start=finish+1
 Message("Parameter number %count% is", param%count%)
 If finish == length then Break
 endif
endwhile

If start <= length
 finish = length+1
 count = count+1
 param%count% = StrSub(thestr, start, finish - start)
 Message("Parameter number %count% is", param%count%)
endif
param0 = count
Message("Parameter count is",param0)

See Also:
StrLen, StrSub

StrSub
Extracts a sub-string out of an existing string.

Syntax:
StrSub(string,start,length)

Parameters:
(s) string the string from which the sub-string is to be extracted.
(i) start character position within string where the sub-string starts.

(The first character of the string is at position 1).

StrSubWild

596

(i) length length of desired sub-string. If you specify a length of zero
it will return a null string. If you specify a length of -1 it
will extract the rest of the string.

Returns:
(s) sub-string of parameter string or "".

This function extracts a sub-string from within a "target" string. Starting at the "start"
position, it copies up to "length" characters into the sub-string.

This function will return "", if illegal bounds are given.

Example:
a = "My dog has fleas"
animal = StrSub(a, 4, 3)
Message("STRSUB", "My animal is a %animal%")

See Also:
StrLen, StrScan

StrSubWild
Extracts a substring matching wildcarded text from within a larger string.

Syntax:
StrSubWild(string,pattern,start)

Parameters:
(s) string the string from which the sub-string is to be extracted.
(s) pattern the wildcarded text to match.
(i) start the position (in characters) within the string to begin

matching.

Returns:
(s) the portion of the string matched by the wildcard pattern.

In the wildcard pattern, "*" matches zero or more characters, and "?" matches any
one character.

Example:
StrSubWild("abcd1234wxyz", "ab*wx", 1) ; would return "abcd1234wx"
StrSubWild("abcd1234wxyz", "1*9", 1) ; would return ""
StrSubWild("abcd1234wxyz", "1*4", 5) ; would return "1234"
StrSubWild("abcd1234wxyz", "1?34*z", 5) ; would return "1234wxyz"

See Also:
StrSub, StrLen, StrScan

StrTypeInfo

 597

StrTrim
Removes leading and trailing blanks from a character string.

Syntax:
StrTrim(string[,flags])

Parameters:
(s) string a string with unwanted blanks at the beginning and/or end.
(i) flags (optional) specifies where spaces will be removed, see

below.

Returns:
(s) string devoid of leading and/or trailing spaces, depending on

flag value.

Flags

Value Meaning

1 Remove space and tabs from left-hand side of string

2 Remove space and tabs from right-hand side of string

3 Remove space and tabs from both sides of string.

This function removes spaces and tab characters from the beginning and end of a text
string.

Example:
mydata = ""
while mydata != "exit"
 mydata = AskLine("STRTRIM","Type stuff ('cancel' quits)", "",0)
 mydata = StrTrim(mydata)
 Display(4,"STRTRIM",">%mydata%<")
endwhile
exit

See Also:
StrFill, StrFix, StrLen

StrTypeInfo
Gets character-type information for a string, or information for a character-type.

Syntax:
StrTypeInfo(string,flag)

Parameters:
(s) string a character or a string.

StrTypeInfo

598

(i) flag a flag specifying the information to retrieve (see below).

Returns:
(i/s) depends on the flag specified. See below.

If "flag" = 0 or 1, "value" specifies a string of 1 or more characters. For each
character in the string, a character-type is determined. The character-type is
comprised of one or more of the following values, combined using the bitwise OR
('|') operator:

Value Name Meaning
1 C1_UPPER Uppercase
2 C1_LOWER Lowercase
4 C1_DIGIT Decimal digits
8 C1_SPACE Space characters

16 C1_PUNCT Punctuation
32 C1_CNTRL Control characters
64 C1_BLANK Blank characters

128 C1_XDIGIT Hexadecimal digits
256 C1_ALPHA Any linguistic character: alphabetical, syllabary,

or ideographic
512 C1_DEFINED A defined character (not used in Windows

95/98/ME

If "flag" = 0, the function returns a value comprised of the character-types of all the
characters in the string, combined using the bitwise AND ('&') operator.

If "flag" = 1, the function returns a value comprised of the character-types of all the
characters in the string, combined using the bitwise OR ('|') operator.

If "flag" = -1, "value" specifies a character-type, and the function returns a string
describing the bits that make up the character-type. The string is comprised of a
space-delimited list of words, with one word describing each bit contained within the
character-type:

Value Name Word in string
1 C1_UPPER "Upper"
2 C1_LOWER "Lower"
4 C1_DIGIT "Digit"
8 C1_SPACE "Space"

16 C1_PUNCT "Punct"
32 C1_CNTRL "Cntrl"
64 C1_BLANK "Blank"

128 C1_XDIGIT "HexDg"
256 C1_ALPHA "Alpha"

StrUpper

 599

512 C1_DEFINED "Undef" if the C1_DEFINED bit is NOT set. (not
used in Windows 95/98/ME)

String parameters and return values are ANSI in Windows 95/98/ME, and Unicode
in Windows NT and newer.

Example:
str= "!@#abcxyz123%@CRLF%111%@TAB%"
While @TRUE
 str = AskLine("Test", "Enter Something", str)
 typeAND = StrTypeInfo(str, 0)
 typeOR = StrTypeInfo(str, 1)
 dalen = StrLen(str)
 allinfo = ""
 if typeAND==0
 allinfo = StrCat(allinfo,"No defined characters
found",@crlf,@crlf)
 else
 if typeAND==512
 allinfo= StrCat(allinfo,"No common type matches found in
string",@crlf,@crlf)
 else
 allinfo= StrCat(allinfo,"Entire string is
:",@crlf,StrTypeInfo(typeAND,-1),@crlf,@crlf)
 endif
 endif

 allinfo= StrCat(allInfo,"String contains
:",@crlf,StrTypeInfo(typeOR,-1),@crlf,@crlf)
 ; Loop once for each character
 For index = 1 to dalen
 char = StrSub(str, index, 1)
 typeinf = StrTypeInfo(StrTypeInfo(char,0),-1)
 allinfo = StrCat(allinfo,char," : ",typeinf,@crlf)
 Next
 Pause(str,allinfo)
endwhile
exit

See Also:
StrSub, StrLower, StrUpper

StrUpper
Converts a string to uppercase.

Syntax:
StrUpper(string)

Parameters:
(s) string any text string.

Switch

600

Returns:
(s) uppercase string.

Use this function to convert a text string to upper case.

Example:
a = AskLine("STRUPPER", "Enter text","", 0)
b = StrUpper(a)
Message(a, b)

See Also:
StriCmp, StrLower

Switch
The Switch statement allows selection among multiple blocks of statements.

Syntax:
Switch expression
 case expression
 statements
 break
 case expression
 statements
 break
EndSwitch

Parameters:
(s) expression an expression that must evaluate to an integer.

The Switch statement allows selection among multiple blocks of statements,
depending on the value of an expression. The expression must evaluate to an integer.

The Switch statement causes the statements in the switch body to be scanned by the
parser as it attempts to find a case statement. When a case statement is found, the
expression following the case statement is evaluated, and if the expression evaluates
to the same value as the expression following the Switch statement, execution of the
following statements is initiated. The EndSwitch statement terminates the Switch
structure.

If a matching case expression was found, and execution was initiated, the following
statements will affect continued execution:

 Break Terminates the Switch structure and transfers control to
the statement following the next matching EndSwitch.

 Continue Stops execution and resumes scanning for a case
statement.

SysParamInfo

 601

 Case Ignored. Treated as a comment

 EndSwitch Terminates the Switch structure and transfers control to
the next statement.

Note: Switch and Select may be used interchangeably. They are synonyms for the
same statement. EndSwitch, EndSelect, "End Switch", and "End Select" may be
used interchangeably.

Example:
response=AskLine("Switch", "Enter a number between 1 and 3", 1, 0)
Switch response
 case 1
 Message("Switch", "Case 1 entered")
 break
 case 2
 Message("Switch", "Case 2 entered")
 break
 case 3
 Message("Switch", "Case 3 entered")
 break
 case response ; default case
 Message("Switch", "Default case entered")
 break
EndSwitch

See Also:
If, For, GoSub, While

SysParamInfo
Retrieves or sets the value of one of the system-wide parameters.

Syntax:
SysParamInfo(request,value,INI-update)

Parameters:
(i) request nteger that specifies the system-wide parameter to retrieve

or set.
(s/i) value depends on specified request. (see below)

Tan

602

(i) INI-update ignored when retrieving information. When setting values
this parameter determines to what extent the value gets
updated:
Value Meaning
0 Set system value in memory only for
 future reference.
1 Write new value to appropriate INI file.
2 Broadcast message to all applications
 informing them of new value.
3 Both 1 and 2.

Returns:
(s/i) depends on specified request. Note: If this function is

unable to execute for any reason, it returns the string
"*UNSUPPORTED*"

For a complete list of request numbers see the Windows Interface Language
help file.

Example:
request = 114 ;GetScreenSaverRunning
value = 0
update = 0
if SysParamInfo(request, value, update) == 1 Then
Message("SysParamInfo ", "Screen saver is active")

See Also:
Environment MouseInfo, NetInfo, WinMetrics, WinSysInfo, WinResources

Tan
Calculates the tangent.

Syntax:
Tan(x)

Parameters:
(f) x angle in radians.

Returns:
(f) the Tan function returns the tangent of x.

Calculates the tangent. If x is large, a loss in significance in the result or significance
error may occur.

Note: To convert an angle measured in degrees to radians, simply multiply by the
constant @Deg2Rad.

Terminate

 603

Example:
real=AskLine("Tangent", "Enter an angle between 0 and 360", "45", 0)
answer=tan(real * @Deg2Rad)
Message("Tangent of %real% degrees is", answer)

See Also:
Acos, Asin, Atan, Cos, Sin, Tanh

Tanh
Calculates the hyperbolic tangent.

Syntax:
Tanh(x)

Parameters:
(f) x angle in radians.

Returns:
(f) the Tanh function returns the hyperbolic tangent of x.

Calculates the hyperbolic tangent. There is no error value.

Note: To convert an angle measured in degrees to radians, simply multiply by the
constant @Deg2Rad.

Example:
real=AskLine("TanH", "Enter an angle between 0 and 360", "45", 0)
answer=Tanh(real * @Deg2Rad)
Message("Hyperbolic Tangent of %real% degrees is", answer)

See Also:
Acos, Asin, Atan, Cos, Cosh, Sin, Sinh, Tan

Terminate
Conditionally ends a WIL program.

Syntax:
Terminate(expression,title,message)

Parameters:
(s) expression any logical expression.
(s) title the title of a message box to be displayed before

termination.
(s) message the message in the message box.

Returns:
(i) @TRUE.

TerminateApp

604

This command ends processing for the WIL program if "expression" is nonzero.
Note that many functions return @TRUE (1) or @FALSE (0), which you can use to
decide whether to cancel a menu item.

If either "title" or "message" contains a string, a message box with a title and a
message is displayed before exiting.

Examples:
;Example 1
; basically a no-op:
Terminate(@FALSE, "", "This will never terminate")
Message("Terminate"," Terminated.")

;Example 2
; exits w/o message if answer isn't "YES":
Terminate(answer != "YES", "", "")
Message("Terminate"," Terminated.")

;Example 3
; unconditional termination w/o message box (same as Exit)
Terminate(@TRUE, "", "")
Message("Terminate"," Terminated.")

;Example 4
; exits with message if variable is less than zero:
Terminate(a < 0, "Error", "Cannot use negative numbers")
Message("Terminate"," Terminated.")

See Also:
Display, Exit, Message, Pause

TerminateApp
Terminates an application.

Syntax:
TerminateApp(winname/appname,name-type,flags)

Parameters:
(s) winname/appname specifies a window name or application name, depending on

the value of "name-type".
(i) name-type number that specifies what type of value was passed in

"winname/appname". See below.
(i) flags see below.

Returns:
(i) @TRUE on success and @FALSE on failure.

"winname/appname" specifies a window name or application name, depending on
the value of "name-type"

TimeFunctions

 605

Name-type Winname/appname
0 full or partial windowname of a WinBatch program window
2 full or partial windowname of a Windows program window
3 application file name of a Windows program

"flags" can be set to 0, or can specify one or more of the following values combined
with the bitwise OR ('|') operator:

Value Meaning
0 Default
1 "current-session-only" flag (valid only if "name-type" == 3). If

this flag is specified, and the script is running in a Terminal
Services environment, then the specified application will only
match if it is running in the same session as the script. Otherwise,
the specified application will match regardless of what session it is
running in.

This function lets you terminate an application abruptly. Normally, you should use
WinClose to close an application gracefully, but sometimes that may not be
possible. Using this function is a drastic, last-resort method of terminating an app.

Note: You will not receive any warning from the operating system before the
application is closed, even if it contains unsaved work. Also, this function may leave
the system in an unstable state. Use this function carefully.

Windows Vista or newer: This function may require an Administrator level
account, because it relies on performance monitoring.

Examples:
appname = "notepad.exe"
Run(appname, "")
Message(appname, "Running")
TerminateApp(appname, 3, 0)
Message(appname, "Terminated")

See Also:
IntControl 12, WinClose

TimeFunctions
Most, but not all, time functions use the "datetime" format, which is actually just a
special form of a string or list.
It looks like

 "YYYY:MM:DD:HH:MM:SS"

TimeDate

606

For example, December 25, 2014, at 3:50:23 PM would be

 "2014:12:25:15:50:23"

Note: If you choose to specify two digit dates see IntControl 41. The YY’s in the
range 50 to 99 are assumed to be in the range 1950 to 1999. YY’s in the range 00 to
49 are assumed to be in the range of 2000 to 2049.

If you need to compare two times in this format, use the TimeDiff, TimeDiffSecs or
TimeDiffDays function to compute the difference in the times and return a positive
or negative result.

TimeAdd
Adds two YmdHms datetime variables

Syntax:
TimeAdd(datetime1,datetime2)

Parameters:
(s) datetime1 a datetime using the format of

YYYY:MM:DD:HH:MM:SS.
(s) datetime2 a datetime to be added to the original using the same format.

Returns:
(s) a new datetime

Use this function to add a specified datetime to an original datetime. TimeAdd uses
normalized conversion so a valid datetime will be returned.

Example:
Now=TimeYmdHms()
AddTime = "0000:00:00:157:00:00" ; 157 hours
Later=TimeAdd(Now, AddTime)
Message("157 hours from now will be", Later)

See Also:
FileTimeGet, FileTimeGetEx, TimeDate, TimeYmdHms, TimeDiffSecs, TimeDelay,
TimeSubtract, TimeWait

TimeDate
Provides the current date and time in a human-readable format. For computations
with times and dates the TimeYmdHms function should be used instead.

Syntax:
TimeDate()

TimeDayofWeek

 607

Parameters:
(none)

Returns:
(s) the current date and time.

This function will return the current date and time in a pre-formatted string. The
format of the string depends on the current settings in the [Intl] section of the registry
key: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\IniFileMapping\win.ini[Intl]

The registry value will be examined to determine which format to use. You can
adjust the registry value via the Regional and Language Options icon in Control
Panel if the format isn't what you prefer.

Note: This function is the same as the DateTime function, which it replaces.

Example:
a=Timedate()
Message("Current date and time", a)

may produce, depending on Control Panel settings:

See Also:
FileTimeGet, FileTimeGetEx, TimeAdd, TimeYmdHms, TimeDiffSecs, TimeDelay,
TimeWait

TimeDayofWeek
Using the WIL language it is possible to grab the day of the week. The following
example from TimeJulianDay grabs the current time and day of the week.

Example:
;This example grabs the Time/Day of the Week.
a=TimeYmdHms()
b=TimeJulianDay(a)
c=(b+5) mod 7
day=ItemExtract(c+1, "Sun Mon Tue Wed Thu Fri Sat", " ")

TimeDiff

608

line=StrCat("Julian Date-> ", b,@CRLF,"Day of week-> ",day)
Message(TimeDate(), line)

See Also:
TimeJulianDay

TimeDelay
Pauses execution for a specified amount of time.

Syntax:
TimeDelay(seconds)

Parameters:
(f) seconds seconds to delay. (max 3600)

Returns:
(i) @TRUE.

This function causes the currently-executing WIL program to be suspended for the
specified period of time. Seconds can be a floating point number: TimeDelay(2.5).

Smaller or larger numbers will be adjusted accordingly.

Note: You can specify a negative number for "seconds", in which case the negative
number will be treated exactly the same as a positive number.

Example:
Message("Wait", "About 15 seconds")
TimeDelay(15)
Message("Hi", "I'm Baaaaaaack")

See Also:
TimeWait, Yield

TimeDiff
Returns the difference between two points in time.

Syntax:
TimeDiff(datetime1,datetime2)

Parameters:
(s) datetime1 format YYYY:MM:DD.
(s) datetime2 format YYYY:MM:DD.

Returns:
(i) difference between the two times, in YmdHms format.

TimeDiffDays

 609

"datetime1" and "datetime2" must be valid date-time strings, in YmdHms format.
"datetime1" must be the later (more recent) of the two times.

Because some months have more days than others, an adjustment may need to be
made when converting the resulting "day" field into months. In the example:

TimeDiff("1998:09:30:00:00:00", "1998:08:31:00:00:00")

the result is, logically, "0000:00:30:00:00:00" (30 days). But in this example:

TimeDiff("1998:10:01:00:00:00", "1998:08:31:00:00:00")

where the operation wraps past the end of the month, there is some question what the
result should be, since there is no such date as September 31. This function handles
this by treating the period from August 31 to September 30 as one month, so the
result would be "0000:01:01:00:00:00" (one month and one day).

Example:
; How long has it been since the beginning of the decade
diff = TimeDiff(TimeYmdHms(), "1990:01:01:00:00:00")
Message("How long since beginning of decade?",diff)

See Also:
FileTimeGet, FileTimeGetEx, TimeDate, TimeAdd, TimeYmdHms, TimeDiffSecs,
TimeDelay, TimeWait, TimeDiffDays

TimeDiffDays
Returns the difference in days between the two dates.

Syntax:
TimeDiffDays(datetime1,datetime2)

Parameters:
(s) datetime1 uses format YYYY:MM:DD:HH:MM:SS, or

YYYY:MM:DD
(s) datetime2 uses format YYYY:MM:DD:HH:MM:SS, or

YYYY:MM:DD

Returns:
(i) the difference in days between the two dates.

Use this function to return the difference in days between two dates. Hours, mins,
secs, if specified, are ignored.

"datetime1" must be the later (more recent) of the two times.

Example:
;Shopping days til Christmas
Now=TimeYmdHms(); Get current time
Year=ItemExtract(1, Now, ":")

TimeJulianDay

610

Xmas=strcat(Year, ":12:25:00:00:00")
Shopping=TimeDiffDays(Xmas, Now)
if Shopping>0
 Message("Shopping Days to Christmas", Shopping)
else
 if Shopping<0
 Message("You missed it by", abs(Shopping))
 else
 Message("Merry Christmas", "And a Happy New year")
 endif
endif

See Also:
FileTimeGet, FileTimeGetEx, TimeDate, TimeAdd, TimeYmdHms, TimeDiffSecs,
TimeDelay, TimeWait

TimeDiffSecs
Returns time difference in seconds between the two datetimes.

Syntax:
TimeDiffSecs(datetime1,datetime2)

Parameters:
(s) datetime1 format YYYY:MM:DD:HH:MM:SS.
(s) datetime2 format YYYY:MM:DD:HH:MM:SS.

Returns:
(i) difference in seconds between the two times.

Use this function to return the time difference between two datetimes. The time
difference should not exceed 68 years or else an error will occur.

"datetime1" must be the later (more recent) of the two times.

Example:
Now=TimeYmdHms()
Midnight=strcat(strsub(Now,1,11), "00:00:00")
Seconds=TimeDiffSecs(Now, Midnight)
Message("Seconds since midnight", Seconds)

See Also:
FileTimeGet, FileTimeGetEx, TimeDate, TimeAdd, TimeDiffDays, TimeYmdHms,
TimeDelay, TimeWait

TimeJulianDay
Returns the Julian day given a datetime.

TimeJulToYmd

 611

Syntax:
TimeJulianDay(datetime)

Parameters:
(s) datetime use format YYYY:MM:DD.

Returns:
(i) the Julian day.

Use this function to return the Julian date given a datetime. The Julian date is often
used in banking and similar calculations as it provides an easy way to compute the
difference between two dates.

Note: Julian date 1= Jan.1,0000.

Example:
;This example grabs the Time/Day of the Week.
a=TimeYmdHms()
b=TimeJulianDay(a)
c=(b+5) mod 7
day=ItemExtract(c+1, "Sun Mon Tue Wed Thu Fri Sat", " ")
line=StrCat("Julian Date-> ", b,@CRLF,"Day of week-> ",day)
Message(TimeDate(), line)

See Also:
FileTimeGet, FileTimeGetEx, TimeDate, TimeAdd, TimeDiffDays, TimeYmdHms,
TimeDelay, TimeWait

TimeJulToYmd
Given a Julian day, returns the datetime.

Syntax:
TimeJulToYmd(julian-date)

Parameters:
(i) julian-date a Julian date.

Returns:
(s) the datetime corresponding to the specified Julian date.

This function converts the specified (numeric) Julian date value to a datetime in
YmdHms format. The "Hms" portion of the returned YmdHms string will always be
"00:00:00".

Example:
today = TimeYmdHms()
jul_today = TimeJulianDay(today)
jul_lastweek = jul_today - 7
lastweek = TimeJulToYmd(jul_lastweek)

TimeWait

612

FileTimeSet("stuff.txt", lastweek)
Message("TimeJulToYmd","Done.")

See Also:
TimeJulianDay

TimeSubtract
Subtracts one YmdHms variable from another.

Syntax:
TimeSubtract(datetime,datetime-diff)

Parameters:
(s) datetime a datetime using the format of

YYYY:MM:DD:HH:MM:SS.
(s) datetime-diff amount of time to be subtracted from the original using the

same format

Returns:
(s) time string in YmdHms format.

"datetime-difference" is an amount of time to be subtracted from "datetime", in
YmdHms format.

Use this function to subtract a specified datetime from an original datetime.
TimeSubtract uses normalized conversion so a valid datetime will be returned.
"datetime difference" can not be larger than "datetime".

TimeSubtract is NOT designed to determine the difference between two points in
time. For that, use TimeDiffDays, TimeDiffSecs, or the TimeDiff function.

Example:
time_now = TimeYmdHms()
time_yesterday = TimeSubtract(time_now, "0000:00:01:00:00:00")
FileTimeSet("stuff.txt", time_yesterday)
Message("TimeSubtract","Time Subtracted.")

See Also:
TimeAdd, TimeDiffDays, TimeDiffSecs, TimeDiff

TimeWait
Pauses execution and waits for the datetime to pass.

Syntax:
TimeWait(datetime)

Parameters:
(s) datetime format YYYY:MM:DD:HH:MM:SS.

UacElevationLevel

 613

Returns:
(i) returns @TRUE.

Use this function to pause execution to wait for the datetime to pass. To wait for the
next occurrence of the specified time, (i.e., today or tomorrow), specify
"0000:00:00:Hours:Minutes:Seconds" for the date.

Example:
a=TimeYmdHms() ; Gets Current Time
b=TimeAdd(a,"0000:00:00:00:00:07") ; Adds 7 seconds to current time
TimeWait(b) ; Waits for that time to occur
Display(3, "Time now should be", b)

See Also:
FileTimeGet, FileTimeGetEx, TimeDate, TimeAdd, TimeDiffDays, TimeDiffSecs,
TimeYmdHms, TimeDelay

TimeYmdHms
Returns current date and time in the datetime format.

Syntax:
TimeYmdHms()

Parameters:
(none)

Returns:
(s) format YYYY:MM:DD:HH:MM:SS.

Use this function to return the current date and time in the datetime format.

Example:
a=TimeYmdHms()
Message("Time is", a)

See Also:
FileTimeGet, FileTimeGetEx, TimeDate, TimeAdd, TimeDiffSecs, TimeDelay,
TimeWait

UacElevationLevel
Gets the current UAC elevation level. (Windows Vista or newer only)

Syntax:
UacElevationLevel()

Parameters:
none

UacExePromptTest

614

Returns:
(i) UAC elevation level.

Return value is one of the following levels:

Level Meaning
0 Error, or unsupported platform.
1 Process is default (UAC is disabled, or standard user).
2 Process is running elevated.
3 Process is not running elevated (user is in Administrators group).

Example:
level = UacElevationLevel()
Message("Current UAC elevation level", level)

See Also:
UacManifestSettings, UacExePromptTest

UacExePromptTest
Determines whether a program would require a UAC elevation prompt.

Syntax:
UacExePromptTest(programname)

Parameters:
(s) programname specifies path and filename of the EXE to be tested.

Returns:
(i) see below.

Return Meaning

-1 running program would return an error.
0 program would not require elevation.
1 program would require elevation.

Example:
val = UacExePromptTest("notepad.exe")
Message("UacExePromptTest Returned", val)
Exit

See Also:
UacElevationLevel, UacManifestSettings

VarType

 615

UacManifestSettings
Gets information on manifest and signature.

Syntax:
UacManifestSettings (request)

Parameters:
(i) request see below.

Returns:
(i/s) depends on request value specified.

Request Meaning
0 (i) Manifest present. @TRUE or @FALSE.
1 (s) Manifest requested execution level (Vista and newer). Returns a

blank string on earlier Windows Platforms.
2 (s) Manifest uiAccess (Vista and newer). Returns a blank string on

earlier Windows Platforms.
3 (i) Valid signature. @TRUE or @FALSE.

Example:
level = UacManifestSettings(1)
Message("Manifest Requested Execution Level", level)

See Also:
UacElevationLevel, UacExePromptTest

VarType
Gets the type of a WIL variable.

Syntax:
VarType(varname)

Parameter:
(s) varname variable name to check.

Returns:
(i) type of variable (see below).

This function returns the type of WIL variable that "varname" specifies. The return
value will be one or more of the following type flags, combined using the bitwise
OR ('|') operator:

Type Meaning
-1 specified name is a function name, reserved word or string constant.
0 undefined

VarType

616

1 integer
2 string
5 file handle

32 floating point value
65 binary buffer

128 Unicode string
256 array
512 variant

1536 COM/OLE Object

Example:
#DefineFunction CheckBits(bitmask)
totalbitmask = bitmask
typelist = ""
bit = 1
While bitmask ;while there's still a bitmask value
 If bitmask & bit ;check bit
 if bit&1 then typelist = strCat(typelist,@cr,"Integer(1)")
 if bit&2 then typelist = strCat(typelist,@cr,"String(2)")
 if bit&4 then typelist = strCat(typelist,@cr,"FileHandle(4)")
 if bit&32 then typelist = strCat(typelist,@cr,"FloatingPoint(32)")
 if bit&64 then typelist =strCat(typelist,@cr,"BinaryBuffer(64)")
 if bit&256 then typelist = strCat(typelist,@cr,"Array(256)")
 if bit&512 then typelist = strCat(typelist,@cr,"Variant(512)")
 if bit&1024 then typelist = strCat(typelist,@cr,"COMObject(1024)")
 ;decrement working bitmask number by existing byte increments
 bitmask = bitmask & ~bit
 Endif
 bit = bit * 2 ;increment byte
EndWhile
typelist = strCat(typelist,@cr,"---------------")
typelist = strCat(typelist,@cr,"Total = ",totalbitmask)
Return StrTrim(typelist)
#EndFunction
var1 = 1
Message(StrCat("var1 = ", var1), CheckBits(VarType(var1)))
var2 = "abc"
Message(StrCat("var2 = ",var2), CheckBits(VarType(var2)))
var3 = FileOpen(StrCat(DirWindows(0),"win.ini"),"Read")
Message(StrCat("var3 = ",var3), CheckBits(VarType(var3)))
fileclose(var3)
var4 = 1.1
Message(StrCat("var4 = ",var4), CheckBits(VarType(var4)))
var5 = BinaryAlloc(4)
Message(StrCat("var5 = ",var5), CheckBits(VarType(var5)))
BinaryFree(var5)
var6 = ArrDimension(2,2)
Message("var6 = {ARRAY}", CheckBits(VarType(var6)))
var7 = ObjectCreate("WbemScripting.SWbemLocator")
Message(StrCat("var7 = ",var7), CheckBits(VarType(var7)))

VersionDLL

 617

Exit

See Also:
isDefined

Version
Returns the version number of the WIL exe program currently running.

Syntax:
Version()

Parameters:
(none)

Returns:
(s) WIL exe program version number.

Use this function to determine the version of the WIL exe program that is currently
running.

Example:
ver = Version()
Message("Version number", ver)

See Also:
DOSVersion, Environment, FileVerInfo, VersionDLL, WinVersion

VersionDLL
Returns the version number of the WIL Interpreter DLL currently running.

Syntax:
VersionDLL()

Parameters:
(none)

Returns:
(s) WIL Interpreter DLL version number.

Use this function to determine the version of the WIL Interpreter DLL that is
currently running. It is useful to verify that a WIL program generated with the latest
version of the language will operate properly on what may be a different machine
with a different version of the WIL Interpreter DLL installed.

Example:
ver = VersionDLL()
If ver < "2.0a"
 Message("Sorry", "WIL version 2.0a or higher required")

WaitForKey

618

 Exit
endif
Message("VersionDll", ver)

See Also:
DOSVersion, Environment, FileVerInfo, Version, WinVersion

WaitForKey
Waits for a specific key to be pressed.

Syntax:
WaitForKey(key1,key2,key3,key4,key5)

Parameters:
(s) key1 - key5 five keystrokes to wait for.

Returns:
(i) position of the selected keystroke (1-5).

WaitForKey requires five parameters, each of which represents a keystroke. The
WIL program will be suspended until one of the specified keys is pressed, at which
time the WaitForKey function will return a number from 1 to 5, indicating the
position of the "key" that was selected, and the program will continue. You can
specify a null string ("") for one or more of the "key" parameters if you don't need to
use all five.

WaitForKey will detect its keystrokes in most, but not all, Windows applications.
Any keystroke that is pressed is also passed on to the underlying application.

WaitForKey supports the following keycodes:

{BACKSPACE} {BS}
{CLEAR} {DELETE}
{DEL} {DOWN}
{END} {ENTER}
{ESCAPE} {ESC}
{F1} {F2}
{F3} {F4}
{F5} {F6}
{F7} {F8}
{F9} {F10}
{F11} {F12}
{F13} {F14}
{F15} {F16}
{HELP} {HOME}
{INSERT} {INS}
{LEFT} {NUMPAD*}

WaitForKeyEx

 619

{NUMPAD+} {NUMPAD-}
{NUMPAD.} {NUMPAD/}
{NUMPAD0} {NUMPAD1}
{NUMPAD2} {NUMPAD3}
{NUMPAD4} {NUMPAD5}
{NUMPAD6} {NUMPAD7}
{NUMPAD8} {NUMPAD9}
{PGDN} {PGUP}
{PRTSC} {RIGHT}
{SPACE} {SP}
{TAB} {UP}

Note that NumLock must be on for the codes {NUMPAD0} through {NUMPAD9}
to be generated. Also, it cannot distinguish between the two "Enter" keys on the
keyboard (both will generate an {Enter} code).

Note: Certain special keycodes, such as {ALT} and {F10} may not work with this
function and should be avoided.

IntControl 80 can be used to wait for user to release *all* keys before proceeding.

Example:
k = WaitForKey("{F11}", "{F12}", "{INSERT}", "", "")
switch k
 case 1
 Message("WaitForKey", "You pressed the F11 key")
 break
 case 2
 Message("WaitForKey", "You pressed the F12 key")
 break
 case 3
 Message("WaitForKey", "You pressed the Insert key")
 break
endswitch

See Also:
IsKeyDown, IntControl 80, WaitForKeyEx

WaitForKeyEx
Waits for a specific key to be pressed within timeout period.

Syntax:
WaitForKeyEx(keycodes,timeout)

Parameters:
(s) keycodes a tab-delimited list of up to 100 keys to wait for. See

WaitForKey for a list of key codes.
(i) timeout the number of seconds to wait before returning.

WallPaper

620

Returns:
(i) position of the selected keystroke, or 0 if none of the

specified keys were pressed before the timeout occured.

This function is like WaitForKey, but it allows you specify up to 100 keys to wait
for and allows for a timeout. Note: Any items in the list past the first 100 will be
silently ignored.

If "keycodes" is a blank string (""), then the keycodes from the most recent use of
this function will be used again, which will save the overhead of re-parsing the
string.

Specify 0 "timeout" to have the function return immediately without waiting. Specify
-1 for no timeout (wait forever).

If one of the specified keys is pressed before the timeout occurs, the function will
return the value corresponding to the position in “keycodes” of the key that was
pressed. The first key in the list is 1.

If none of the specified keys are pressed before the timeout occurs, the function will
return 0.

Example:
key = "{BACKSPACE},{BS},{CLEAR},{DELETE},{DEL},{DOWN},{END},{ENTER}"
key = key:",{ESC},{F1},{F2},{F3},{F4},{F5},{F6}"
key = key:",{F7},{F8},{F9},{F10},{F11},{F12},{F13},{F14},"
key = key:",{F15},{F16},{HELP},{HOME},{INSERT},{INS},{LEFT}"
key = key:"{PGDN},{PGUP},{PRTSC},{RIGHT},{SPACE},{SP},{TAB},{UP},"
key = key:"0,1,2,3,4,5,6,7,8,9,`,-,=,[,],\,;,',.,/,"
key = key:"a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z"
key = StrReplace(key,",",@tab)
BoxOpen("WaitForKeyEx","Press a key")
item = WaitForKeyEx(key,-1)
dakey = ItemExtract(item,key,@tab)
BoxShut()
Message("WaitForKeyEx", StrCat("You pressed the '",dakey,"' key"))
exit

See Also:
WaitForKey

WallPaper
Changes the Windows wallpaper.

Syntax:
WallPaper(bmp/html-name,tile)

Parameters:
(s) bmp/html-name Name of the bmp/html wallpaper file.

While

 621

(i) tile @TRUE if wallpaper should be tiled;
@FALSE if wallpaper should not be tiled.
2 - if the wallpaper should be stretched.

Returns:
(i) @FALSE.

This function immediately changes the Windows wallpaper. It can even be used for
wallpaper "slide shows".

This function supports the Active Desktop wallpaper in Internet Explorer 4.0.

Example:
DirChange("c:\windows")
a = FileItemize("*.bmp")
a = AskItemList("Select New paper",a,@tab,@unsorted,@single,@false)
tile = @FALSE
If FileSize(a) < 40000 Then tile = @TRUE
Wallpaper(a, tile)

See Also:
SysParamInfo

While
Conditionally and/or repeatedly executes a series of statements.

Syntax:
While continuation-condition
 series
 of
 statements
EndWhile

Parameters:
(s) continuation-condition an expression to be evaluated.
(s) series of statements statements to be executed repeatedly until the condition

following the While keyword evaluates to @FALSE.

The While statement causes a series of statements to be repeatedly executed until the
"continuation-condition" evaluates to zero or @FALSE. The test of the
"continuation-condition" takes place before each execution of the loop. A While
loop executes zero or more times, depending on the continuation-condition.

The following statements affect continued execution:

Break Terminates the While structure and transfers control to the
statement following the next matching EndWhile.

WinActiveChild

622

Continue Returns to the While statement and re-evaluates the
expression.

EndWhile Returns to the While statement and re-evaluates the

expression.

Note: EndWhile and "End While" may be used interchangeably.

Example:
a=10
while a>5
 Display(3, "The value of a is now", a)
 a=a-1
endwhile
Message("The value of a should now be 5",a)

See Also:
If, For, GoSub, Switch, Select

WinActivate
Activates a previously running parent window.

Syntax:
WinActivate(partial-winname)

Parameters:
(s) partial-winname either an initial portion of, or an entire window

name. The most-recently used window whose title matches
the name will be activated.

Returns:
(i) @TRUE if a window was found to activate; @FALSE if

no windows were found.

Use this function to activate windows for user input.

This function works only with top-level (parent) application windows.

Example:
Run("notepad.exe", "")
WinActivate("~Notepad")

See Also:
WinActiveChild, WinGetActive, WinName, WinShow, Partial Window Names
(pg.65)

WinActiveChild
Activates a previously running child window.

WinArrange

 623

Syntax:
WinActiveChild(main-winname,child-winname)

Parameters:
(s) main-winname the initial part of, or an entire parent window name.
(s) child-winname the initial part of, or an entire child window name.

Returns:
(i) @TRUE if the window was found to activate; @FALSE if

no windows were found.

Use this function to activate a child window for user input. The most recently used
window whose title matches the name will be activated.

Note: The partial window name you give must match the initial portion of the
window name (as it appears in the title bar) exactly, including proper case (upper or
lower) and punctuation. The parent window must exist or this function will return an
error.

Example:
Run(StrCat(DirHome(),"winbatch studio.exe"),"")
list = WinItemChild("WinBatch Studio")
choice = AskItemList("Choose the child window to activate", list,
 @TAB, @UNSORTED,@SINGLE)
if WinExistChild("WinBatch Studio",choice)
 WinActiveChild("WinBatch Studio",choice)
endif

See Also:
WinActivate, WinGetActive, WinShow, Partial Window Names (pg.65)

WinArrange
Arranges, tiles, and/or stacks application windows.

Syntax:
WinArrange(style)

Parameters:
(i) style one of the following: @STACK, @TILE (or

@ARRANGE), @ROWS, or @COLUMNS.

Returns:
(i) @TRUE.

Use this function to rearrange the open windows on the screen. (Any iconized
programs are unaffected.)

WindowOnTop

624

If there are more than four open windows and you specify @ROWS, or if there are
more than three open windows and you specify @COLUMNS, @TILE will be used
instead.

This function works only with top-level (parent) application windows.

Example:
; Reveal all windows
WinArrange(@TILE)

See Also:
WinHide, WinIconize, WinItemize, WinPlace, WinShow, WinZoom

WinClose
Closes an open window.

Syntax:
WinClose(partial-winname)

Parameters:
(s) partial-winname either an initial portion of, or an entire window name. The

most-recently used window whose title matches the name
will be closed.

Returns:
(i) @TRUE if a window was found to close; @FALSE if no

windows were found.

Use this function to close windows.

WinClose will not close the window which contains a currently executing WIL
program. See IntControl 47.

You can use EndSession to end the current Windows session.

This function works only with top-level (parent) application windows.

Example:
Run("notepad.exe", "")
Message("WinClose","Window is about to close.")
WinClose("~Notepad")

See Also:
EndSession, WinHide, WinIconize, WinItemize, WinWaitClose, IntControl 47,
Partial Window Names (pg.65)

WindowOnTop
Keep window on top.

WinExeName

 625

Syntax:
WindowOnTop(partial-winname,mode [,retry])

Parameters:
(s) partial-winname partial windowname of the window to be affected.
(i) mode A number specifying what action to take. See below.

 (i) retry [optional] Specifying window retry timeout to use. See below.

Returns:
(i) returns @TRUE on success, @FALSE on failure.

This function tells the specified window to remain on top of all other windows, or to
return to a normal (non-topmost) state.

Mode Meaning
0 Don't stay on top
1 Stay on top
-1 Return window's current topmost state: @TRUE = topmost;

@FALSE = not topmost

Retry Meaning

@TRUE Use the current timeout setting to wait for the target window to
appear.
Note that IntControl 46 can be used to change the current retry
timeout setting (default is 9 seconds).

@FALSE (default} Omit timeout. Immediately generate an error when
target window is not found.

Example:
Run("calc.exe","")
;Place calc window on top
WindowOnTop("Calculator",1)

See Also:
IntControl46, WinState

WinExeName
Returns the name of the executable file which created a specified window.

Syntax:
WinExeName(partial-winname)

Parameters:
(s) partial-winname the initial part of, or an entire, window name.

WinExist

626

Returns:
(s) name of the EXE file, or "" on failure.

Returns the name of the EXE file which created the first window found whose title
matches "partial-winname".

"Partial-winname" is the initial part of a window name, and may be a complete
window name. It is case-sensitive. You should specify enough characters so that
"partial-winname" matches only one existing window.

A "partial-winname" of "" (null string) specifies the window making the current call
to the WIL Interpreter. WinExeName("") will return a full path to the program
making the current call to the WIL Interpreter.

Notes:
This function works only with top-level (parent) application windows.
WinExeName will return the string "(16-bit application)" for ANY 16 bit
application.
If WinExeName returns "" (null string), it means the function failed. You might be
able to get extended error information from the wwwbatch.ini file.

Windows NT or newer, this function returns module names instead of full program
names. The module name is usually the same as the root name of the program,
without the extension.
Windows Vista or newer, this function may require an Administrator level account,
because it relies on performance monitoring.

Example:
Run("notepad.exe,"")
prog = WinExeName("~Notepad")
WinClose("~Notepad")
TimeDelay(5)
Run(prog, "")

See Also:
AppExist, AppWaitClose, Run, WinExist, WinGetActive, WinName, Partial
Window Names (pg.65)

WinExist
Tells if specified window exists.

Syntax:
WinExist(partial-winname)

Parameters:
(s) partial-winname the initial part of, or an entire, window name.

WinExistChild

 627

Returns:
(i) @TRUE if a matching window is found; @FALSE if a

matching window is not found.

Note: The partial window name you give must match the initial portion of the
window name (as appears in the title bar) exactly, including proper case (upper or
lower) and punctuation.

This function works only with top-level (parent) application windows.

Most of the "win" functions have a built-in wait (where required). WinExist does
not.

Example:
if WinExist("~Notepad") == @FALSE Then RunIcon("Notepad", "")

See Also:
AppExist, WinActivate, WinClose, WinExeName, WinExistChild, WinGetActive,
WinItemize, WinState, WinWaitExist, Partial Window Names (pg.65)

WinExistChild
Tells if specified child window exists.

Syntax:
WinExistChild (parent-winname, child-winname)

Parameters:
(s) parent-winname the initial part of, or an entire parent window name.
(s) child-winname the initial part or, or an entire child window name.

Returns:
(i) @TRUE if a matching window is found; @FALSE if a

matching window is not found.

Use this function to test for the existence of a child window.

Note: The partial window names you give must match the initial portion of the
window name exactly, as it appears in the title bar, including proper case (upper or
lower) and punctuation. The parent window must exist or this function will return an
error.

Example:
Run(StrCat(DirHome(),"winbatch studio.exe"),"")
list = WinItemChild("WinBatch Studio")
choice = AskItemList("Choose the child window to activate", list,
 @TAB, @UNSORTED,@SINGLE)
if WinExistChild("WinBatch Studio",choice)
 WinActiveChild("WinBatch Studio",choice)
endif

WinHelp

628

See Also:
AppExist, WinActivate, WinClose, WinExeName, WinGetActive, WinItemize,
WinItemChild, WinState, Partial Window Names (pg.65)

WinGetActive
Gets the title of the active window.

Syntax:
WinGetActive()

Parameters:
(none)

Returns:
(s) title of active window.

Use this function to determine which window is currently active.

Example:
currentwin = WinGetActive()
Message("WinGetActive", "Current window is %currentwin%.")

See Also:
WinActivate, WinExeName, WinItemize, WinName, WinPlaceGet, WinPosition,
WinTitle

WinHelp
Calls a Windows help file.

Syntax:
WinHelp(help-file,function,keyword)

Parameters:
(s) help-file name of the Windows help file, with an optional full path.
(s) function function to perform (see below).
(s) keyword keyword to look up in the help file (if applicable), or "".

Returns:
(i) @TRUE if successful; @FALSE if unsuccessful.

This command can be used to perform several functions from a Windows help
(.HLP) file. It requires that the Windows help program WINHELP.EXE or
WINHLP32.EXE be accessible. The desired function is indicated by the "function"
parameter (which is not case-sensitive). The possible choices for "function" are:

Function Keyword
"Contents" Brings up the Contents page for the help file. Specify a null

WinHelp

 629

string ("") for the "keyword" parameter.
"Key" Brings up help for the keyword specified by the "keyword"

parameter. You must specify a complete keyword, and it must
be spelled correctly. If there is more than one occurrence of
"keyword" in the help file, a search box will be displayed
which allow you to select the desired topic from the available
choices.

"PartialKey" Brings up help for the keyword specified by the "keyword"
parameter. You may specify a partial keyword name: if it
matches more than one keyword in the help file, a search box
will be displayed which allow you to select the desired one
from the available choices. You may also specify a null string
("") for "keyword", in which case you will get a search dialog
containing all keywords in the help file.

"Context" Brings up help for the topic specified by "keyword".
"Keyword" must be a numeric context identifier defined in the
[MAP] section of the .HPJ file that was used to build the help
file.

"Command" Executes the help macro specified by the "keyword" parameter.
"Quit" Closes the WINHELP.EXE window, unless another application

is still using it. Specify a null string ("") for the "keyword"
parameter.

"HelpOnHelp" Brings up the help file for the Windows help program
(WINHELP.HLP). Specify a null string ("") for the "keyword"
parameter.

"HTML" Launches HH.EXE to view a topic in an HTML help (.CHM)
file. "Keyword" specifies the topic to display, or "" to view the
starting topic in the file.
Example:
WinHelp("iexplore.chm", "HTML",
"web_collect_favorites.htm")

Which is identical to:
Run("HH.EXE",
"iexplore.chm::/web_collect_favorites.htm")

Note: WILHH.EXE is a WinBatch utility that augments
HTML Help. WILHH can be used in addition to or as a
complete replacement for HH.EXE. WILHH offers solutions
for some known bugs in HTML Help.

WILHH helps you to resolve these problems with HH.EXE:
- Open a standalone HTML Help window. Ask WILHH to
create a standalone HTML Help window. This window

WinHide

630

remains open until the user closes it. Once this window is
created, you can open new topics in the window without
creating a new window, just as you can with WinHelp.

- Open an HTML Help window based on a keyword search.
A common way of linking topics in a help system is through
keyword and associative links--KLinks and ALinks, in
WinHelp terminology. However, WILHH also allows you to
open the new topics in a window that is already open. In
addition, WILHH allows you to use ALinks and KLinks in
ways that HH.EXE doesn't support.

WILHH Commandline:

WILHH.EXE {CHM}

Opens a CHM file to its main page.

WILHH.EXE {CHM} [{KEYWORD}:]

Opens a CHM file and loads a topic based on keyword.
Note: KEYWORD can specifie one or more ALink names
or KLink keywords to look up. Multiple entries are
delimited by a semicolon.

Example:
WinHelp("wil.hlp", "Key", "AskItemList")

WinHide
Hides a window.

Syntax:
WinHide(partial-winname)

Parameters:
(s) partial-winname either an initial portion of, or an entire window

name. The most-recently used window whose title matches
the name will be hidden.

Returns:
(i) @TRUE if a window was found to hide;

@FALSE if no windows were found.

Use this function to hide windows. The programs are still running when they are
hidden.

A partial-window name of "" (null string) hides the window making the current call
to the WIL Interpreter.

WinIdGet

 631

This function works only with top-level (parent) application windows.

Example:
Run("notepad.exe", "")
WinHide("~Notepad")
TimeDelay(3)
WinShow("~Notepad")

See Also:
RunHide, WinClose, WinIconize, WinPlace, Partial Window Names (pg.65)

WinIconize
Iconizes a window.

Syntax:
WinIconize(partial-winname)

Parameters:
(s) partial-winname either an initial portion of, or an entire window name. The

most-recently used window whose title matches the name
will be iconized.

Returns:
(i) @TRUE if a window was found to iconize;

@FALSE if no windows were found.

Use this function to turn a window into an icon at the bottom of the screen.

A partial-window name of "" (null string) iconizes the current WIL Interpreter
window.

This function works only with top-level (parent) application windows.

Example:
Run("notepad.exe", "")
WinIconize("~Not") ; partial window name used here

See Also:
RunIcon, WinClose, WinHide, WinPlace, WinShow, WinZoom, Partial Window
Names (pg.65)

WinIdGet
Returns a unique "Window ID" (pseudo-handle) for the specified window name.

Syntax:
WinIdGet(partial-winname)

WinIsDOS

632

Parameters:
(s) partial-winname the initial part of, or an entire, window name.

Returns:
(s) the unique "Window ID".

Use this function to obtain the unique "Window ID" (pseudo-handle) for the
specified parent window name. All functions which accept a partial window name as
a parameter now accept the Window ID obtained with WinIdGet. This can be useful
to distinguish between multiple windows with the same name, or to track a window
whose title changes.

Example:
Run("notepad.exe", "")
winid1 = WinIdGet("~Notepad"); most-recently-accessed Notepad
Run("notepad.exe", "")
winid2 = WinIdGet("~Notepad"); most-recently-accessed Notepad
WinPlace(0, 0, 500, @noresize, winid1)
WinPlace(500, 0, 1000, @noresize, winid2)
WinActivate(winid1)

See Also:
DllHwnd, WinExist, WinGetActive, WinItemNameId, WinTitle, Partial Window
Names (pg.65)

WinIsDOS
Tells whether or not a particular window is a DOS or console-type window.

Syntax:
WinIsDOS("partial-winname")

Parameters:
(s) partial-winname the initial part of, or an entire, window

name.

Returns:
(i) @TRUE if the window is a DOS window.

@FALSE if it is not a DOS window.

Use this function to determine if the application which created the specified window
is a DOS or Windows Program.

Note: "Partial-winname" is the initial part of a window name, and may be a complete
window name. It is case-sensitive. You should specify enough characters so that
"partial-winname" matches only one existing window. If it matches more than one
window, the most recently accessed window which it matches will be used.

WinItemChild

 633

Example:
comspec = Environment("COMSPEC")
Run(comspec, "")
TimeDelay(1)
title= comspec
a=WinIsDOS(title)
if a==@TRUE then message(title, "is a DOS window")
else message(title, "is NOT a DOS window")

See Also:
WinExeName, WinExist, WinGetActive, WinItemize, WinName, WinState,
WinTitle, Partial Window Names (pg.65)

WinItemChild
Returns a list of all the child windows under this parent.

Syntax:
WinItemChild(parent-winname)

Parameters:
(s) parent-winname initial part of, or an entire, parent window name.

Returns:
(s) a list of all the child windows under the parent.

Use this function to return a tab-delimited list of all child windows existing under a
given parent window.

Note: "parent-winname" is the initial part of a window name, and may be a complete
window name. It is case-sensitive. You should specify enough characters so that
"parent-winname" matches only one existing window. If it matches more than one
window, the most recently accessed window which it matches will be used.

Example:
Run(StrCat(DirHome(),"winbatch studio.exe"),"")
list = WinItemChild("WinBatch Studio")
choice = AskItemList("Choose the child window to activate", list,
 @TAB, @UNSORTED,@SINGLE)
if WinExistChild("WinBatch Studio",choice)
 WinActiveChild("WinBatch Studio",choice)
endif

See Also:
AppExist, WinActivate, WinClose, WinExeName, WinGetActive, WinItemize,
WinState, Partial Window Names (pg.65)

WinItemizeEx

634

WinItemize
Returns a tab-delimited list of all open windows.

Syntax:
WinItemize()

Parameters:
(none)

Returns:
(s) list of the titles of all open windows.

This function compiles a list of all the open application windows' titles and separates
the titles by tabs. This is especially useful in conjunction with the AskItemList
function, which enables the user to choose an item from such a tab-delimited list.

This function works only with top-level (parent) application windows. See
WinItemChild to work with child windows.

Example:
; Find a window
allwins = WinItemize()
mywind = AskItemList("Windows", allwins, @TAB, @unsorted, @single,
@false)
WinActivate(mywind)
exit

See Also:
DirItemize, FileItemize, AskItemList, WinClose, WinGetActive, WinItemNameId,
WinName, WinPlaceGet, WinPosition

WinItemizeEx
Returns the full name of window(s) matching a partial window name.

Syntax:
WinItemizeEx(partial-winname,multiple,hidden[,return-type])

Parameters:
(s) partial-winname specifies a partial window name to look for.It can be a blank

string (""), in which case it will match any window.
(i) multiple @TRUE or @FALSE. see below.
(i) hidden @TRUE or @FALSE. see below.
(i) return-type [optional] specifies the format in which the list of windows

will be returned.

Returns:
(s) list of the titles of all open windows.

WinItemNameId

 635

If 'multiple' is @TRUE, then this function returns a tab-delimited list of all open
windows that match 'partial-winname'. If 'multiple' is @FALSE, then it returns the
name of the first open window found that matches 'partial-winname'. If no
appropriate matching windows are found, it returns a blank string ("").

If 'hidden' is @TRUE, then hidden windows are included in the list of returned
windows. If 'hidden' is @FALSE, then hidden windows are not included. If 'hidden'
is @FALSE and 'multiple' is @FALSE, then this function returns the name of the
first visible (non-hidden) open window found that matches 'partial-winname'.

"return-type" specifies the format in which the list of windows will be returned, and
can be one of the following:

Type Meaning
0 Tab-delimited list of window titles (default)
1 Tab-delimited list of window ID's
2 List of window titles and their corresponding window ID's,in the form:

"window1-name|window1-ID|window2-name|window2-ID|..."

The "return-type" values are numbered differently than in WinItemProcID.

Note: this function does not accept a Window ID as the 'partial-winname' parameter.

Example:
; Find all windows that are not hidden
wins = WinItemizeEx("",@TRUE,@FALSE)
mywind = AskItemList("Windows", wins, @TAB, @unsorted, @single,
@false)
WinActivate(mywind)

See Also:
DirItemize, FileItemize, AskItemList, WinClose, WinGetActive, WinItemNameId,
WinName, WinPlaceGet, WinPosition, WinItemize

WinItemNameId
Returns a list of all open windows and their Window ID's.

Syntax:
WinItemNameId()

Parameters:
(none)

Returns:
(s) list of the titles and Window ID's of all open windows.

This function returns a list of top-level window titles and their corresponding
"Window ID's", in the form:

WinItemProcId

636

 "window1-name|window1-ID|window2-name|window2-ID|..."

Example:
#DefineFunction UDFReformat_List (list)
 newlist = ""
 count = ItemCount(list,"|")
 count = count/2
 For x = 1 to count by 2
 title= ItemExtract(x,list,"|")
 id= ItemExtract(x+1,list,"|")
 newlist = StrCat(newlist,title,"|",id,@tab)
 Next
 newlist = StrTrim(newlist)
Return newlist
#EndFunction

winlist = WinItemNameId()
list = UDFReformat_List (winlist)
AskItemList("Windows and ID's", list, @tab, @unsorted,@single,
@false)

See Also:
WinIdGet, WinItemize

WinItemProcId
Returns a list of windows for the specified process.

Syntax:
WinItemProcID(process-id,flags,return-type)

Parameters:
(i) process-id returned from RunShell.
(i) flags see below.
(i) return-type see below.

Returns:
(s) a tab-delimited list of all top-level (parent)

window ID's owned by the process specified
by "process-id".

This function is designed to be used in correlation with RunShell.

You can obtain the process ID of an application that is launched with the RunShell
function by specifying @GETPROCID as the "waitflag". This is the same as
specifying @NOWAIT, except that on success the function will return the process
ID of the application that was launched. This process ID can be used with the
WinItemProcID function . The process ID may be a negative number. If a process
ID cannot be obtained a 1 will be returned to indicate success. In all cases, a return
value of 0 indicates failure.

WinMetrics

 637

"flags" can be 0, or one or more of the following values combined with the binary
OR ("|") operator:

Flag Meaning
0 Default list of window ID's
1 Include windows with blank titles
2 Include hidden windows
4 Include windows which are not enabled for keyboard and mouse input
8 Include windows with the title "WinOldAp"

"return-type" specifies the format in which the list of windows will be returned,
and can be one of the following:

Type Meaning
0 Tab-delimited list of window ID's
1 Tab-delimited list of window titles
2 List of top-level window titles and their corresponding "Window ID's",

in the form:
"window1-name|window1-ID|window2-name|window2-ID|..."

Example:
procid = RunShell("calc.exe", "", "", @NORMAL, @GETPROCID)
TimeDelay(3)
If (procid != 0) && (procid != 1) ; if we got a valid process ID
 winids = WinItemProcId(procid, 2, 0)
 Message("Window ID(s)", winids)
Endif

See Also:
RunShell

WinMetrics
Returns Windows system information.

Syntax:
WinMetrics(request#)

Parameters:
(i) request# see below.

Returns:
(i) see below.

The request# parameter determines what piece of information will be returned.

Req# Return value

WinMetrics

638

-7 2 if WOW64 (32-bit emulation under 64-bit Windows), 0 otherwise
-6 pixels per horizontal dialog unit
-5 pixels per vertical dialog unit
-4 Windows Platform; 0 = Other, 1 = Windows 3.x, 2 = Windows for

Workgroups, 3 = Win32s, 4 = Windows NT Family, 5 = Windows
95/98/ME

-3 WIL EXE type; 0=Win16, 1=Intel32, 2=Alpha32, 3=Mips32,
4=PowerPC32, 5=64-bit WinBatch on Intel64/AMD64

-2 WIL platform; 1=Win16, 2=Win32, 3=Win64
-1 Number of colors supported by video driver
0 Width of screen, in pixels
1 Height of screen, in pixels
2 Width of arrow on vertical scrollbar
3 Height of arrow on horizontal scrollbar
4 Height of window title bar
5 Width of window border lines
6 Height of window border lines
7 Width of dialog box frame
8 Height of dialog box frame
9 Height of thumb box on scrollbar

10 Width of thumb box on scrollbar
11 Width of an icon
12 Height of an icon
13 Width of a cursor
14 Height of a cursor
15 Height of a one line menu bar
16 Width of full screen window
17 Height of a full screen window
18 Height of Kanji window (Japanese)
19 Is a mouse present (0 = No, 1 = Yes)
20 Height of arrow on vertical scrollbar
21 Width of arrow on horizontal scrollbar
22 Is debug version of Windows running (0 = No, 1 = Yes)
23 Are Left and Right mouse buttons swapped (0 = No, 1 = Yes)
24 Reserved
25 Reserved
26 Reserved
27 Reserved
28 Minimum width of a window

WinMetrics

 639

29 Minimum height of a window
30 Width of bitmaps in title bar
31 Height of bitmaps in title bar
32 Width of sizeable window frame
33 Height of sizeable window frame
34 Minimum tracking width of a window
35 Minimum tracking height of a window
41 @TRUE or non-zero if the Microsoft Windows for Pen computing

extensions are installed; zero, or @FALSE, otherwise.
42 @TRUE or non-zero if the double-byte character set (DBCS)

version of USER.EXE is installed; @FALSE, or zero otherwise.
43 Number of buttons on mouse, or zero if no mouse is installed.
44 Not supported.
63 Not supported.
67 Not supported.
70 @TRUE or non-zero if the user requires an application to present

information visually in situations where it would otherwise present
the information only in audible form; @FALSE, or zero, otherwise.

73 Not supported.
74 Not supported.
75 (WinNT 4.0+,) Non-zero if a mouse with a wheel is installed, zero

otherwise
76 (Win2000) Coordinates for the left side of the virtual screen
77 (Win2000) Coordinates for the top of the virtual screen
78 (Win2000) Width of the virtual screen, in pixels
79 (Win2000) Height of the virtual screen, in pixels
80 (Win2000) Number of display monitors on the desktop
81 (Win2000) Non-zero if all the display monitors have the same color

format, zero otherwise.

There are a number of other request #'s which can be specified, but are of limited
usefulness and therefore not documented here. Details on these can be obtained from
Win32 programming references, available from Microsoft (and others).

Example:
mouse = "NO"
If WinMetrics(19) == 1 Then mouse = "YES"
Message("Is there a mouse installed?", mouse)

See Also:
Environment, MouseInfo, NetInfo, WinResources, WinSysInfo, SysParamInfo

WinPlace

640

WinName
Returns the name of the window calling the WIL Interpreter.

Syntax:
WinName()

Parameters:
(none)

Returns:
(s) window name.

Returns the name of the window making the current call to the WIL Interpreter.

Example:
allwins = WinItemize()
win = AskItemList("Close window", allwins, @tab, @sorted, @single,
@false)
If win == WinName()
 Message("Sorry", "I can't close myself")
else
 WinClose(win)
endif
Exit

See Also:
WinActivate, WinExeName, WinGetActive, WinItemize, WinTitle

WinPlace
Places a window anywhere on the screen.

Syntax:
WinPlace(x-ulc,y-ulc,x-brc,y-brc,partial-winname)

Parameters:
(i) x-ulc how far from the left of the screen to place the upper-left

corner (0-1000).
(i) y-ulc how far from the top of the screen to place the upper-left

corner (0-1000).
(i) x-brc how far from the left of the screen to place the bottom-right

corner (10-1000) or @NORESIZE.
(i) y-brc how far from the top of the screen to place the bottom-right

corner (10-1000) or @NORESIZE.
(s) partial-winname either an initial portion of, or an entire window

name. The most-recently used window whose title matches
the name will be moved to the new position.

WinPlaceChild

 641

Returns:
(i) @TRUE if a window was found to move;

@FALSE if no windows were found.

Use this function to move windows on the screen. (You cannot, however, move
icons or windows that have been maximized to full screen).

The "x-ulc", "y-ulc", "x-brc", and "y-brc" parameters are based on a logical screen
that is 1000 points wide by 1000 points high.

You can move the window without changing the width and/or height by specifying
@NORESIZE for the "x-brc" and/or "y-brc" parameters, respectively.

Some sample parameters:

Upper left quarter of the screen: 0, 0, 500, 500
Upper right quarter: 500, 0, 1000, 500
Center quarter: 250, 250, 750, 750
Lower left eighth: 0, 750, 500, 1000

This function works only with top-level (parent) application windows.

Note: 1000x1000 virtual screen size is based on the primary monitor in a multi-
monitor display configuration

Example:
Run("Notepad.exe","")
WinPlace(0, 0, 200, 200, "~Notepad")

See Also:
WinArrange, WinHide, WinIconize, WinPlaceChild, WinPlaceSet, WinPosition,
WinShow, WinZoom, Partial Window Names (pg.65)

WinPlaceChild
Places a child window.

Syntax:
WinPlaceChild(x-ulc,y-ulc,x-brc,y-brc,parent-winname,child-winname)

Parameters:
(i) x-ulc how far from the left of the screen to place

the upper-left corner (0-1000).
(i) y-ulc how far from the top of the screen to place

the upper-left corner (0-1000).
(i) x-brc how far from the left of the screen to place

the bottom-right corner (10-1000) or @NORESIZE.
(i) y-brc how far from the top of the screen to place

the bottom-right corner (10-1000) or @NORESIZE.
(s) parent-winname specifies the parent of the window to place.

WinPlaceGet

642

(s) child-winname specifies the child window to be placed.

Returns:
(i) @TRUE if a window was found to move.

This function is like WinPlace, but places a child window. The coordinates are
specified as virtual coordinates within the client area of the parent window, where
the parent window is 1000 x 1000.

Use this function to move child windows on the screen. (You cannot, however,
move icons or windows that have been maximized to full screen).

The "x-ulc", "y-ulc", "x-brc", and "y-brc" parameters are based on a logical screen
that is 1000 points wide by 1000 points high.

You can move the window without changing the width and/or height by specifying
@NORESIZE for the "x-brc" and/or "y-brc" parameters, respectively.

Some sample parameters:

Upper left quarter of the screen: 0, 0, 500, 500
Upper right quarter: 500, 0, 1000, 500
Center quarter: 250, 250, 750, 750
Lower left eighth: 0, 750, 500, 1000

This function works only with child application windows.

Note: 1000x1000 virtual screen size is based on the primary monitor in a multi-
monitor display configuration

Example:
Run(StrCat(DirHome(),"winbatch studio.exe"),"")
list = WinItemChild("WinBatch Studio")
choice = AskItemList("Choose the child window to activate", list,
 @TAB, @UNSORTED,@SINGLE)
if WinExistChild("WinBatch Studio",choice)
 WinActiveChild("WinBatch Studio",choice)
 WinPlaceChild(0, 0, 200, 200, "WinBatch Studio", choice)
Endif

See Also:
WinArrange, WinHide, WinIconize, WinPlace, WinPlaceSet, WinPosition,
WinShow, WinZoom, Partial Window Names (pg.65)

WinPlaceGet
Returns window coordinates.

Syntax:
WinPlaceGet(win-type,partial-winname)

WinPlaceSet

 643

Parameters:
(i) win-type @ICON, @NORMAL, or @ZOOMED
(s) partial-winname the initial part of, or an entire, window name.

Returns:
(s) window coordinates (see below).

This function returns the coordinates for an iconized, normal, or zoomed window.

"Partial-winname" is the initial part of a window name, and may be a complete
window name. It is case-sensitive. You should specify enough characters so that
"partial-winname" matches only one existing window. If it matches more than one
window, the most recently accessed window which it matches will be used.

The returned value is a string of either 2 or 4 numbers, as follows:

Iconic windows "x y" (upper left corner of the icon)
Normal windows "upper-x upper-y lower-x lower-y"
Zoomed windows"x y" (upper left corner of the window)

All coordinates are relative to a virtual 1000x1000 screen.

This function works only with top-level (parent) application windows.

Note: 1000x1000 virtual screen size is based on the primary monitor in a multi-
monitor display configuration

Example:
Run("notepad.exe", "")
pos = WinPlaceGet(@NORMAL, "~Notepad")
TimeDelay(2)
WinPlaceSet(@NORMAL, "~Notepad", "250 250 750 750")
TimeDelay(2)
WinPlaceSet(@NORMAL, "~Notepad", pos)

See Also:
WinGetActive, WinItemize, WinPlaceSet, WinPosition, WinState, Partial Window
Names (pg.65)

WinPlaceSet
Sets window coordinates.

Syntax:
WinPlaceSet(win-type,partial-winname,position-string)

Parameters:
(i) win-type @ICON, @NORMAL, or @ZOOMED
(s) partial-winname the initial part of, or an entire, window name.
(s) position-string window coordinates (see below).

WinPosition

644

Returns:
(s) previous coordinates.

This function sets the coordinates for an iconized, normal, or zoomed window. The
window does not have to be in the desired state to set the coordinates; for example,
you can set the iconized position for a normal window so that when the window is
subsequently iconized, it will go to the coordinates that you've set.

"Partial-winname" is the initial part of a window name, and may be a complete
window name. It is case-sensitive. You should specify enough characters so that
"partial-winname" matches only one existing window. If it matches more than one
window, the most recently accessed window which it matches will be used.

"Position-string" is a string of either 2 or 4 numbers, as follows:

Iconic windows "x y" (upper left corner of the icon)
Normal windows "upper-x upper-y lower-x lower-y"
Zoomed windows"x y" (upper left corner of the window)

All coordinates are relative to a virtual 1000x1000 screen.

This function works only with top-level (parent) application windows.

Note: 1000x1000 virtual screen size is based on the primary monitor in a multi-
monitor display configuration

Example:
Run("Notepad.exe","")
WinPlaceSet(@ICON, "~Notepad", "10 950")

See Also:
WinActivate, WinArrange, WinPlace, WinPlaceGet, WinState, Partial Window
Names (pg.65)

WinPosition
Returns Window position.

Syntax:
WinPosition(partial-winname)

Parameters:
(s) partial-winname the initial part of, or an entire window name.

Returns:
(s) window coordinates, delimited by commas.

Returns the current window position information for the selected window. It returns
4 comma-separated numbers (see WinPlace for details).

This function works only with top-level (parent) application windows.

WinPositionChild

 645

Example:
Run("notepad.exe", "") ; start Notepad
WinPlace(0,0,300,300, "~Notepad") ; place Notepad
pos = WinPosition("~Notepad") ; save position
TimeDelay(2)
WinPlace(200,200,300,300, "~Notepad") ; move Notepad
TimeDelay(2)
WinPlace(%pos%, "~Notepad") ; restore Notepad

See Also:
WinGetActive, WinItemize, WinPlace, WinPlaceGet, WinState, Partial Window
Names (pg.65)

WinPositionChild
Returns child window position.

Syntax:
WinPositionChild(parent-winname,child-winname)

Parameters:
(s) parent-winname the initial part of, or an entire parent window name.
(s) child-winname the initial part of, or an entire child window name.

Returns:
(s) window coordinates window coordinates delimited by commas.

This function is like WinPosition, but returns coordinates for a child window. The
coordinates are specified as virtual coordinates within the client area of the parent
window, where the parent window is 1000 x 1000.

This function works only with child application windows.

Example:
allwins = WinItemize()
parentwnd = AskItemList("Top Level Windows", allwins, @tab, @sorted,
@single, @false)
childwins=WinItemChild(parentwnd)
childwnd = AskItemList("Choose a child window to get coordinates
from", childwins, @tab, @sorted, @single, @false)
ret = WinPositionChild(parentwnd,childwnd)
Message(StrCat("Parent: ",parentwnd, " Child: ",childwnd),
StrCat("coordinates = ",ret))
Exit

See Also:
WinGetActive, WinItemize, WinPosition, WinPlace, WinPlaceGet, WinState, Partial
Window Names (pg.65)

WinResources

646

WinResources
Returns information on available memory and resources.

Syntax:
WinResources(request#[,format])

Parameters:
(i) request# see below.
(i) format [optional] see below.

Returns:
(i) see below.

The value of request# determines the piece of information returned.

Req# Return value
10 Number between 0 and 100 giving a general idea of current memory

utilization, in which 0 indicates no memory use and 100 indicates full
memory use.

11 Total number of bytes of physical memory.
12 Number of bytes of physical memory available.
13 Total number of bytes that can be stored in the paging file. Note: that

this number does not represent the actual physical size of the paging file
on disk.

14 Number of bytes available in the paging file.
15 Total number of bytes that can be described in the user mode portion of

the virtual address space of the calling process.
16 Number of bytes of unreserved and uncommitted memory in the user

mode portion of the virtual address space of the calling process.
17 Number of bytes of unreserved and uncommitted memory in the

extended portion of the virtual address space of the calling process
(Windows 2000 and newer).

Format is an optional parameter that controls the format in which the size is returned.
If the result is too large to be returned as an integer (larger than 2 gigabytes).

Format Meaning

0 (Default) Floating Point

1 Huge number. This is a long decimal number string, which may
represent a number too large to be converted to an integer.'Huge
number' is a special data type. It is a long decimal number string,
which may represent a number too large to be converted to an
integer. This value cannot be modfied with standard arithmetic
operations, it requires the use of the Huge Math extender.

WinState

 647

Example:
mem = WinResources(10)
Message("Current memory utilization ", mem)

See Also:
WinMetrics, WinSysInfo, SysParamInfo

WinShow
Shows a window in its "normal" state.

Syntax:
WinShow(partial-winname)

Parameters:
(s) partial-winname either an initial portion of, or an entire window

name. The most-recently used window whose
title matches the name will be shown.

Returns:
(i) @TRUE if a window was found to show;

@FALSE if no windows were found.

Use this function to restore a window to its "normal" size and position.

A partial-window name of "" (null string) restores the current WIL interpreter
window.

Example:
RunZoom("Notepad.exe", "")
; other processing...
WinShow("~Notepad")

See Also:
WinArrange, WinHide, WinIconize, WinZoom, Partial Window Names (pg.65)

WinState
Returns the current state of a window.

Syntax:
WinState(partial-winname)

Parameters:
(s) partial-winname the initial part of, or an entire, window name.

Returns:
(i) window state (see below).

WinSysInfo

648

"Partial-windname" is the initial part of a window name, and may be a complete
window name. It is case-sensitive.

You should specify enough characters so that "partial-winname" matches only one
existing window. If it matches more than one window, the most recently accessed
window which it matches will be used.

Possible return values are as follows.

Value Symbolic name Meaning
-1 @HIDDEN Specified window exists, but is hidden
0 @FALSE Specified window does not exist
1 @ICON Specified window is iconic (minimized)
2 @NORMAL Specified window is a normal window
3 @ZOOMED Specified window is zoomed (maximized)

This function works only with top-level (parent) application windows.

Example:
RunIcon("Notepad.exe","")
If WinState("~Notepad") == @ICON Then WinShow("~Notepad")

See Also:
Run, WinExist, WinGetActive, WinHide, WinIconize, WinItemize, WinPlace,
WinPlaceGet, WinPlaceSet, WinPosition, WinShow, WinZoom, Partial Window
Names (pg.65)

WinSysInfo
Returns system configuration information.

Syntax:
WinSysInfo()

Parameters:
(none)

Returns:
(s) a TAB delimited list of system configuration information.

WinSysInfo returns a TAB-delimited list containing the following items:

1. computer name of the current system.
2. processor architecture.
3. page size (specifies granularity of page protection and commitment).
4. mask representing the set of processors configured into the system.
5. number of processors in the system.
6. processor type.

WinTitle

 649

7. granularity in which memory will be allocated.
8. system's architecture-dependent processor level.
9. architecture-dependent processor revision.

Example:
sysinfo = WinSysInfo()
computer = ItemExtract(1, sysinfo, @TAB)
processor = ItemExtract(6, sysinfo, @TAB)
Message(computer, "is a %processor%")

See Also:
WinMetrics, WinResources, SysParamInfo

WinTitle
Changes the title of a window.

Syntax:
WinTitle(partial-winname,new-name)

Parameters:
(s) partial-winname either an initial portion of, or an entire window

name. The most-recently used window whose
title matches the name will be shown.

(s) new-name the new name of the window.

Returns:
(i) @TRUE if a window was found to rename;

@FALSE if no windows were found.

Use this function to change a window's title.

A "partial-window name" of "" (null string) refers to the current WIL interpreter
window.

Warning: Some applications may rely upon their window's title staying the same!
Therefore, the WinTitle function should be used with caution and adequate testing.

This function works only with top-level (parent) application windows.

Example:
; Capitalize title of window
allwinds = WinItemize()
mywin = AskItemList("Uppercase Windows", allwinds, @TAB, @unsorted,
 @single, @false)
WinTitle(mywin, StrUpper(mywin))
Drop(allwinds, mywin)

See Also:
WinGetActive, WinItemize, WinName, Partial Window Names (pg.65)

WinVersion

650

WinVersion
Provides the version number of the current Windows system.

Syntax:
WinVersion(level)

Parameters:
(i) level see below.

Returns:
(i) Windows version number.

Level Returns
0

(i) Minor version: returns the decimal part of the Windows version
number; i.e. 1.0, 2.11, 3.0, etc.

1

(i) Major version: returns the integer part of the Windows version
number; i.e. 1.0, 2.11, 3.0, etc.

2 (i) Build number
3 (s) CSD version: returns a string indicating the latest service pack that

has been installed (e.g., "Service Pack 1"), or a blank string ("") if no
service pack has been installed.

4 (i) Windows platform [same as WinMetrics(-4)]
Value Meaning
0 Other
1 Windows 3.X
2 Windows for Workgroups
3 Win32s
4 Windows NT Family
5 Windows 95/98/ME

5

(s) Version string
This is a string in the form: "platform-major-minor"
where "platform" is one of the following:
Value Meaning

0 Win32s
1 Windows 95/98/ME
2 Windows NT Family

6 Major version number of the latest Service Pack installed.
7 Minor version number of the latest Service Pack installed.
8 Bit flags that identify the product suites available on the system. This

can be 0, or one or more of the following values, combined using the
bitwise OR ('|') operator:
Value Meaning
1 Microsoft Small Business Server was once installed on the

WinVersion

 651

system, but may have been upgraded to another version of
Windows (see note below).

2 Windows Server 2003, Enterprise Edition, Windows 2000
Advanced Server, or Windows NT Server 4.0 Enterprise Edition
is installed (see note below).

4 Microsoft BackOffice components are installed.
16 Terminal Services is installed.
32 Microsoft Small Business Server is installed with the restrictive

client license in force (see note below).
64 Windows XP Embedded is installed.
128 Windows Server 2003, Datacenter Edition or Windows 2000

Datacenter Server is installed.
256 Terminal Services is installed, but only one interactive session is

supported.
512 Windows XP Home Edition is installed.
1024 Windows Server 2003, Web Edition is installed.
Note that you should not solely rely upon the '1' flag to determine
whether Small Business Server has been installed on the system, as both
this flag and the '32' flag are set when this product suite is installed. If
you upgrade this installation to Windows Server, Standard Edition, the
'32' flag will be unset, however, the '1' flag will remain set. In this case,
this indicates that Small Business Server was once installed on this
system. If this installation is further upgraded to Windows Server,
Enterprise Edition, the '1' flag will remain set.

9 Additional information about the system. This can be one of the
following values:
Value Meaning
1 The operating system is Windows "Longhorn", Windows XP

Professional, Windows XP Home Edition, Windows 2000
Professional, or Windows NT Workstation 4.0.

2 The system is a domain controller.
3 The system is a server.

10 System Architecture.
Value Meaning
1 32-bit operating system architecture.
2 64-bit operating system architecture.

Notes: A server that is also a domain controller is reported as '2', not '3'.

A blank string will be returned for levels 6-9 on unsupported Windows platforms.

To decipher between all Windows platforms. Use the function WinVersion(5) to tell
which one you have:

WinVersion

652

Windows Platform Major Minor

95 1 4 0

98 1 4 10

ME 1 4 90

NT3.51 2 3 51

NT 4 2 4 0

NT 2000 2 5 0

XP 2 5 1

2003 Server 2 5 2

Vista / 2008 Server 2 6 0

7 / 2008 R2 Server 2 6 1

8 / 2012 Server 2 6 2

10 2 10 0

v = WinVersion(5)
Platform="Unknown"
if v=="1-4-0" then Platform="Windows 95"
if v=="1-4-10" then Platform="Windows 98"
if v=="1-4-90" then Platform="Windows ME"
if v=="2-3-51" then Platform="Windows NT 3.51"
if v=="2-4-0" then Platform="Windows NT 4.0"
if v=="2-5-0" then Platform="Windows 2000"
if v=="2-5-1" then Platform="Windows XP"
if v=="2-5-2" then Platform="Windows 2003 Server"
if v=="2-6-0" then Platform="Windows Vista/2008 Server"
if v=="2-6-1" then Platform="Windows 7/2008 R2 Server "
if v=="2-6-2" then Platform="Windows 8/2012 Server "
if v=="2-10-2" then Platform="Windows 10"
Message("Platform",platform)

Example:
minorver = WinVersion(0)
majorver = WinVersion(1)
buildver = WinVersion(2)
csdver = WinVersion(3)
Message("Windows Version", StrCat(majorver, ".", minorver, "
",buildver, " ", csdver))

See Also:
 Environment, FileVerInfo, Version, VersionDLL

WinWaitClose

 653

WinWaitChild
Waits for a child window to exist.

Syntax:
WinWaitChild(parent-winname,child-winname,timeout)

Parameters:
(s) parent-winname the initial part of, or an entire parent window name.
(s) child-winname the initial part of, or an entire child window name.
(i) timeout the number of seconds to wait (maximum = 86400). Specify

0 to return immediately (no wait). Specify -1 for no timeout
(wait forever).

Returns:
(s) @TRUE if the window appeared; @FALSE if it didn't.

Note: This function has a built in ½ second time delay. This can be modified by
IntControl 70.

Example:
Run(StrCat(DirHome(),"winbatch studio.exe"),"")
WinWaitExist("WinBatch Studio", 5)
TimeDelay(1)
SendMenusTo("WinBatch Studio", "File Open")
SendKeysTo("Open", "c:\config.sys{enter}")
ret = WinWaitChild("WinBatch Studio", "c:\CONFIG.SYS", 5)
if ret == @True
 Message("Notice","Child window found")
else
 Message("Notice","Child window found")
Endif

See Also:
AppWaitClose, IntControl 70, TimeDelay, RunWait, WinExist, WinExistChild,
WinWaitClose, WinWaitExist, Partial Window Names (pg.65)

WinWaitClose
Suspends the WIL program execution until a specified window has been closed.

Syntax:
WinWaitClose(partial-winname[,timeout])

Parameters:
(s) partial-winname either an initial portion of, or an entire window

name.
(i) timeout [optional] number of seconds to wait (maximum = 86400).

Specify 0 to have the function return immediately. Specify -
1 for no timeout (wait forever). The default is -1.

WinWaitExist

654

Returns:
(i) @TRUE if at least one window was found to wait for;

@FALSE if no windows were found.

Use this function to suspend the WIL program's execution until the user has finished
using a given window and has manually closed it.

This function works only with top-level (parent) application windows.

If the window doesn’t exist, the function will immediately return the value
@FALSE. If the window exists, the function will wait for it close or until the
timeout period has elapsed, whichever comes first, and then return the value
@TRUE.

Note: This function has a built in ½ second time delay. This can be modified by
IntControl 70.

Example:
Run("notepad.exe", "")
Display(4, "Note", "Close Notepad to continue")
WinWaitClose("~Notepad")
Message("Continuing...", "Notepad closed")

See Also:
AppWaitClose, IntControl 70, TimeDelay, RunWait, WinExist, WinWaitChild,
WinWaitExist, Yield, Partial Window Names (pg.65)

WinWaitExist
Waits for a window to exist.

Syntax:
WinWaitExist(partial-winname, timeout)

Parameters:
(s) partial-winname the initial part of, or an entire, window name.
(i) timeout the number of seconds to wait (maximum = 86400). Specify

0 to return immediately (no wait). Specify -1 for no timeout
(wait forever).

Returns:
(s) @TRUE if the window appeared; @FALSE if it didn't.

Note: This function has a built in ½ second time delay. This can be modified by
IntControl 70.

Example:
Run("notepad.exe", "")
WinWaitExist("~Notepad", 5)
TimeDelay(1)

WinZoom

 655

SendMenusTo("~Notepad", "File Open")
SendKeysTo("File Open", "c:\config.sys~")

See Also:
AppWaitClose, IntControl 70, TimeDelay, RunWait, WinExist, WinWaitChild,
WinWaitClose, Partial Window Names (pg.65)

WinWaitReady
Waits until an application is waiting for user input.

Syntax:
WinWaitReady(partial-winname,timeout)

Parameters:
(s) partial-winname the initial part of, or an entire, window name.
(i) timeout the number of milliseconds to wait.

Specify 0 to return immediately (no wait).
Specify -1 for no timeout (wait forever).

Returns:
(i) It returns @TRUE if it successfully waits, or @FALSE if a

time-out occurred (or if it was unable to initiate a wait).

This function waits until the process which created the specified window is waiting
for user input with no input pending, or until the specified time-out interval has
elapsed. It can only be used with 32-bit GUI applications.

Example:
Run("Notepad.exe","")
retvalue = WinWaitReady("~Notepad", 5)
WinClose("~Notepad")

See Also:
WinWaitChild, WinWaitExist

WinZoom
Maximizes a window to full-screen.

Syntax:
WinZoom(partial-winname)

Parameters:
(s) partial-winname either an initial portion of, or an entire window name. The

most-recently used window whose title matches the name
will be shown.

Yield

656

Returns:
(i) @TRUE if a window was found to zoom;

@FALSE if no windows were found.

Use this function to "zoom" windows to full screen size.

A partial-winname of " " (null string) zooms the current WIL interpreter window.

This function works only with top-level (parent) application windows.

Example:
Run("notepad.exe", "")
WinZoom("~Notepad")
TimeDelay(3)
WinShow("~Notepad")

See Also:
RunZoom, WinHide, WinIconize, WinPlace, WinShow, Partial Window Names
(pg.65)

Yield
Provides time for other windows to do processing.

Syntax:
Yield

Parameters:
(none)

Returns:
(not applicable)

Use this command to give other running windows time to process. This command
will allow each open window to process 20 or more messages.

The Yield waits a very short time. The TimeDelay function gives other running
windows time to process messages, like the Yield does. TimeDelay might be better
to use for longer time delays.

Example:
; run Excel and give it some time to start up
sheet = AskLine ("Excel", "File to run:", "", 0)
Run("excel.exe", sheet)
Yield
Yield
Yield

See Also:
TimeDelay, TimeWait, Exclusive, WinWaitChild, WinWaitExist,Yields

Yields

 657

Yields
Provides time for other windows to do processing.

Syntax:
Yields(count)

Parameters:
(s) count number of yields to perform.

Returns:
(not applicable)

Use this command to give other running windows time to process. This command
will allow each open window to process 20 or more messages.

This function is the same as the "Yield" command, but allows you to specify the
number of yields to perform; i.e., "Yields(5)" is the same as 5 consecutive "Yield"
commands.

The Yield waits a very short time. The TimeDelay function gives other running
windows time to process messages, like the Yield does. TimeDelay might be better
to use for longer time delays.

Example:
; run Excel and give it some time to start up
Run("excel.exe", "")
Yields(300)

See Also:
TimeDelay, TimeWait, Exclusive, WinWaitChild, WinWaitExist,Yield

Menu File Structure

 659

MENU FILES
If you are using a batch file-based implementation of WIL, you can skip this section
and move on to the WIL Tutorial (pg. 19). WinBatch and WebBatch are batch file
applications. FileMenu, PopMenu and WinBatch Studio are menu file applications.

About Menu Files
This section of the manual shows how to create WIL menu files. It is not important
at this point to understand the actual commands which are shown in the menus.

WIL Batch processes can be run from batch files or from menu files. WinBatch uses
batch files. Several other applications use WIL as their macro language in the form
of menu files.

The single workstation version of WinBatch, (not the Compiler), includes two
accessory applications, PopMenu and FileMenu. These run batch processes from
menu files. WIL is also available to software developers for use as the macro
language in their own software.

How Menu Files are used
WIL scripts can be implemented in two ways: via a batch process or a menu file. In a
batch process, WIL scripts are associated with the WIL processor allowing them to
be initiated and run on the desktop just as any true executable is launched and run.

WIL scripts can also be launched as menu items from a drop down menu. However,
you must have an implementation of WIL with the capability of generating the menu
either within one of our applications or as an enhancement to standard Windows
applications. WIL adds menu capability to the Windows Task Bar and the Shortcut
Menu in the Windows Explorer via the utilities FileMenu and PopMenu.

Menu File Structure
WIL menus are defined in a menu file which is simply a standard ASCII text file
(the kind created by Notepad). Each menu file consists of one or more lines of menu
statements. Each line is terminated with a carriage return / line feed (CRLF)
combination, and can be up to 2048 characters long. Generally, these files have an
extension of .MNW, or .MNU. See your product documentation for the name of the
default menu file that it uses.

Menu File Structure

660

Every menu file contains one or more menu items. When activated they appear as
drop-down menus. They may also contain top-level menu names which show up in a
main menu bar (refer to your product documentation for more information). Each
menu item consists of a title which identifies the item, followed by one or more lines
of menu code which the WIL Interpreter will execute when you choose the item.

Essentially, your menu file is an outline of menu options, formatted with specific
spacing and containing sections of code.

There are two main parts of a menu file: The first section, which is optional, is the
initialization code. This section is executed once when the menu is first loaded and
run. It's located before the first menu item.

The remainder of the menu file consists of menu item titles and their associated
statements. The code under each menu title is executed when the corresponding
menu item is selected. Execution begins at the first statement under a menu item and
continues up to the definition of the next item.

Menus can be up to four levels deep. Levels are determined by the column position
of the first letter in the menu title. The top level menu starts at Column 1, the second
starts in Column 2, and so on. The WIL code must begin at Column 5 or greater.
Same level menu items must be separated by WIL code.

In the example below, Option #1 and Option #2 are separated by the WIL code
which is to be executed.

Menu File Structure

 661

&Top Menu (Level 1)
 Option #1 (Level 2)
 Submenu of Option #1 (Level 3)
 Submenu of Option #1 (Level 4)
 WIL code

 Option #2 (Level 2)
 Submenu (Level 3)
 WIL code

Your application probably included a pre-defined sample menu. Refer to it for a
practical example of correct menu structure.

Here is another example of an extremely simple menu file:
&Games
 &Solitaire
 DirChange("C:\Program Files\Microsoft Games\Solitaire\")
 Run("Solitaire.exe", "")

The first line, &Games, begins in column 1, and therefore defines a top-level menu
item. Depending on the product you are using, it may either appear on a menu bar or
it may appear on the first-level drop-down menu. The ampersand (&) is optional; it
defines an Alt-key combination for the entry (Alt-G in this example). It will appear
in the menu as Games.

The second line, &Solitaire, begins in column 2, and defines the title for an
individual menu item. Again, the ampersand (&) is optional. It defines an Alt-key
combination of Alt-S. This item will appear in the menu as Solitaire.

The third line, starting with DirChange("C:\Program Files\Microsoft
Games\Solitaire\") is the actual code which will be executed when this menu item is
selected. Like all menu code, it must be indented at least four spaces (i.e., it must
begin in column 5 or higher). This third line is really the entire WIL program; the
two lines above it are simply titles which define the position of the program (i.e., the
menu item) in the overall menu structure.

Here's a slightly expanded version of the program:
&Games
 &Solitaire
 Display(1, "Game Time", "About to play Solitaire")
 DirChange("C:\Program Files\Microsoft Games\Solitaire\")
 Run("Solitaire.exe", "")

Here, we've simply added a line of code, changing this into a two-line program.
Notice that each additional line of code is still indented the same four spaces.

Now, let's look at a menu file which contains two menu items:
&Games
 &Solitaire

Menu File Structure

662

 DirChange("C:\Program Files\Microsoft Games\Solitaire\")
 Run("Solitaire.exe", "")
 &Minesweeper
 DirChange("C:\Program Files\Microsoft Games\MineSweeper\")
 Run("MineSweeper.exe", "")

We've added a new menu item, Minesweeper, which begins in column 2 (like
Solitaire) and will appear under the top-level menu item Games.

To add a new top-level menu item, just create a new entry beginning in column 1:
&Games
 &Solitaire
 DirChange("C:\Program Files\Microsoft Games\Solitaire\")
 Run("Solitaire.exe", "")
 &Minesweeper
 DirChange("C:\Program Files\Microsoft Games\MineSweeper\")
 Run("MineSweeper.exe", "")

&Applications
 &Notepad
 Run("notepad.exe", "")
 &WinBatch Studio
 Run("winbatch studio.exe", "")

Now there are two top-level menu titles, Games and Applications, each of which
contains two individual items (the blank line between Games and Applications is
not necessary, but is there just for readability).

In supported applications such as FileMenu, a comment can be displayed on the
status bar in the Windows Explorer. This works only for top level menu items. The
comment must be on the same line as the top level item. For example, the menu item
below is a main menu for running Games. "Killers of Time" is the comment that
appears in the status bar.
&Games ;Killers of Time
 &Solitaire
 DirChange("C:\Program Files\Microsoft Games\Solitaire\")
 Run("Solitaire.exe", "")

In addition to top-level menus, you can optionally define up to three additional levels
of sub-menus. The titles for the first-level, second-level and third-level sub-menus
must begin in columns 2, 3, and 4 respectively, and the individual menu items they
contain must be indented one additional column.

 For example:
&Applications
 &Editors
 &Notepad
 Run("notepad.exe", "")
 &WinBatch Studio

Modifying Menus

 663

 Run("winbatch studio.exe", "")

 &Excel
 Run("excel.exe", "")

In the above example, Editors is a sub-menu (beginning in column 2), which
contains two menu items (beginning in column 3). Excel also begins in column 2,
but since it does not have any sub-menus defined below it, it is a bottom-level (i.e.,
individual) menu item. Here's an even more complex example:
&Applications
 &Editors
 &Notepad
 Run("notepad.exe", "")
 &Winbatch Studio
 Run("winbatch studio.exe", "")
 |&Spreadsheets
 &Windows-based
 &Excel
 Run("excel.exe", "")

 _&DOS-based
 &Quattro
 Run("q.exe", "")

We've added an additional level of sub-menus under Spreadsheets, so that the
bottom-level menu items (Excel and Quattro) now begin in column 4. There are
also two special symbols presented in this menu: the underscore (_), which causes a
horizontal separator line to be drawn above the associated menu title, and the vertical
bar (|), which causes the associated menu title to appear in a new column.

Some applications allow you to place an individual (bottom-level) menu item in
column 1:
&Notepad
 Run("notepad.exe", "")

in which case it will appear on the top-level menu, but will be executed immediately
upon being selected (i.e., there will be no drop-down menu).

Modifying Menus
As stated earlier, menu files must be created and edited with an editor, such as
WinBatch Studio, that is capable of saving files in pure ASCII text format. After
you have edited your menu, it must be reloaded into memory for the changes to take
effect. You may be able to do this manually, via the application's control menu (see
your product documentation for information). Or, you can have a menu item use the
Reload function. Otherwise, the menus will be reloaded automatically the next time

Menu Hotkeys

664

you execute any menu item. However, if the menus are reloaded automatically, the
WIL Interpreter will not be able to determine which menu item you had just selected,
and it will therefore display a message telling you that you need to re-select it.

Menu Hotkeys
In addition to the standard methods for executing a menu item (double-clicking on it,
highlighting it and pressing Enter, or using Alt + the underlined letter), you may be
able to define optional hotkeys for your menu items. (PopMenu and WinBatch
Studio have this capability, FileMenu does not.) Hotkeys will cause an item to be
executed immediately upon pressing the designated hot key. Hotkeys are defined by
following the menu item with a backslash (\) and then the hotkey:
&Accessories
 &Notepad \ {F2}
 Run("notepad.exe", "")
 &Calculator \ ^C
 Run("calc.exe", "")

In the above example, the F2 key is defined as the hotkey for Notepad, and Ctrl-C is
defined as the hotkey for Calculator.

Most single keys and key combinations may be used as hotkeys, except for the F10
key, and except for Alt and Alt-Shift key combinations (although you may use
Alt-Ctrl key combinations).

Refer to the SendKey function (pg. 556) for a list of special keycodes which may
also be used as hot keys.

If you always access a menu item by using its hotkey, you may not need or want the
menu item to appear in the pull-down menus.

If so, you can make it a non-displayed menu item by placing a @ symbol in front of
the title.

For example:
&Accessories
 @Notepad \ {F2}
 Run("notepad.exe", "")

In this case, Notepad would not appear in the pull-down menus, but could still be
accessed by using the F2 hotkey.

Note: Hotkeys and non-displayed menu items may not work in all implementations
of the WIL Interpreter.

Menu Items

 665

Menu Items
Menu titles can consist of letters, digits, spaces, punctuation marks - in fact any
displayable ANSI characters your text editor can create.

There are special characters you can use to modify the appearance of items in the
menus.

& Causes the following character to be underlined in the menu item.
The user can select the item by pressing the ALT key with the
character instead of using the mouse.

| In a main menu, puts this item on a new line.
| In a drop down menu, this item starts a new column.
_ Used to create a horizontal bar (in drop down menus only).
@ Causes the item not to be displayed in the menu.

In order to identify a menu item within a WIL statement, each menu item you define
has an associated menu name. The menu name is built using only the letters and
digits that make up the menu title. Menu names are case-insensitive; you don't have
to worry about how the actual menu title is capitalized in order to identify it.

For menu items in a pop-up menu, the menu name consists of its parent menu's
name, plus the pop-up menu item's name concatenated at the end.

Top-level menu names must begin in column 1. Sub-menu names are optional, and if
used must begin in column 2-4; each column of indentation represents an additional
level of sub-menu nesting. Actual menu code must begin in column 5 or higher, and
must appear directly under the menu name to which it belongs.

Predefined Constants

 667

APPENDIX
Constants

Predefined Constants
WIL has a number of built-in integer constants that can make your scripts much
more readable. These start with the @-sign, and are case-insensitive.

Logical Conditions
@NO
@OFF
@TRUE
@YES
@ON
@FALSE

Window Arranging
@NORESIZE
@STACK
@ARRANGE
@TILE
@ROWS
@COLUMNS

Window Status
@NORMAL
@ZOOMED
@ICON
@HIDDEN
@NOACTIVATE

Array Sort and Search
@STRINGSORT
@LOGICALSORT

Menu Handling
@CHECK
@UNCHECK
@DISABLE
@ENABLE

String Handling
@FWDSCAN
@BACKSCAN

System Control
@MAJOR
@MINOR

Error Handling
@CANCEL
@NOTIFY
@OFF

Keyboard Status
@SHIFT
@CTRL

INI File Management
@WHOLESECTION

String Constants

668

OS Dependent
@CAPSLOCK
@NUMLOCK
@REGCLASSES
@REGCURRENT
@REGMACHINE
@REGUSERS
@SCROLLLOCK
@WHOLESECTION

Mouse Control
@LBUTTON
@RBUTTON
@MBUTTON
@LCLICK
@RCLICK
@MCLICK
@LDBLCLICK
@RDBLCLICK
@MDBLCLICK
@MPLAYLCLK
@MPLAYRCLK
@MPLAYMCLK
@MPLAYLDBLCK
@MPLAYRDBLCK
@MPLAYMDBLCK
@MPLAYLBUTTON
@MPLAYRBUTTON
@MPLAYMBUTTON

BinarySort Control
@ASCENDING
@DESCENDING
@STRING
@WORD1
@WORD2
@WORD4
@FLOAT8

Miscellaneous
@GETEXITCODE
@GETPROCID
@MULTIPLE
@NOWAIT
@OPEN
@ROWS
@SAVE
@SINGLE
@SORTED
@STACK
@TILE
@UNSORTED
@WAIT

String Constants
WIL defines a few string constants that are handy for formatting and processing text
data. These start with the @-sign, and are case-insensitive.

@CRLF
 13,10 cr,lf

@LF
 10 lf

@CR
 13, cr

@TAB
 09 tab

Floating Point Constants

 669

Floating Point Constants
WIL has several predefined floating point constants that can be handy for scientific
and engineering scripts. Like all WIL constants, they start with the @-sign, and are
case-insensitive.

@AMC
 Atomic Mass Constant
 1.66043E-27

@GOLDENRATIO
 Goldenratio
 1.6180339887498948

@AVOGADRO
 Avogadro's Constant
 6.02252E23

@GRAVITATION
 Gravity Constant
 6.670E-11

@BOLTZMANN
 Boltzmann Entropy Constant
 1.38054E-23

@LIGHTMPS
 Speed of Light (miles/sec)
 186272

@DEG2RAD
 Degrees to radians
 conversion constant
 0.017453292519943

@e
 Base of natural or
 Napierian logarithms
 2.718281828459045

@LIGHTMTPS
 Lightmtps meters/sec
 2.997925E8

@MAGFIELD
 Magnetic Field Constant
 1.256637

@ELECTRIC
 Electric Field Constant
 8.8541853E-12

@PARSEC
 Parsec (AU)
 206.265

@EULERS
 Eulers's Constant
 0.5772156649015338

@PI
 Pi
 3.141592653589793

@FARADAY
 Faraday Constant
 9.64870E4

@PLANCKERGS
 Planck's Constant (Ergs)
 6.6252E-27

@GFTSEC
 Gravitational Acceleration
 feet/sec2
 32.174

@PLANCKJOULES
 Planck's Constant
 (joules)
 6.6256E-34

@GMTSEC
 Gravitational Acceleration
 meters/sec2
 9.80665

@RAD2DEG
 Radians to Degrees
 Conversion Constant
 57.29577951308232

Predefined Dialog Constants

670

Predefined Dialog Constants
DialogProcOptions Constants
(also passed to callbacks)
@deInit
@deTimer
@dePbPush
@deRbPush
@deCbCheck
@deEdText
@deFlSelect
@deIbSelect
@deDlChange
@deCaChange
@deSpChange
@deClose
@deFlDblclick
@deIbDblclick
@deComEvent
@deMiSelect
@deMiInit
@deResize
@deRvrSelect
@deRvrDblclick
@deRviCheck
@deRviText
@deRvhClick

DialogProcOptions Constants
(not passed to callbacks)
@dpoDisable
@dpoBkground
@dpoSysMenu
@dpoTitle
@dpoCtlName
@dpoCtlNumber
@dpoClientSize

DialogControlState Constants
@dcsSetFocus
@dcsGetStyle
@dcsAddStyle
@dcsRemStyle
@dcsGetFocus
@dcsMouseOver

DialogObject Constants
@doAddEvent
@doRemEvent
@doGetObject
@doGetPicture

 Dialog Callback Procedure
Return Code Constants
 @retCancel
@retDefault
@retNoExit

Predefined Dialog Constants

 671

Dialog Control Styles
@csDefault
@csInvisible
@csDisabled
@csListOnly
@csReadOnly
@csPassword
@csDefButton
@csDigits
@csFlat
@csNoAdjust
@csCenter
@csRight
@csCurLeft
@csCurRight
@csShield
@csMenuCheck
@csMenuRadio
@csMenuSep
@csMenuBreak
@csNoHeader
@csFirstHeader
@csGrid
@csSingleSel
@csFullSel
@csAsort
@csDsort
@csColEdit
@csColCheck
@csIncHeader

DialogControlSet and/or
DialogControlGet Constants
@dcCheck
@dcDot
@dcText
@dcTitle
@dcContents
@dcSelect
@dcDate
@dcSpin
@dcTabStop
@dcScroll
@dcBackColor
@dcBitmap
@dcTextColor
@dcAddItem
@dcRemItem
@dcGroupDot
@dcPosition
@dcMenuNames
@dchWnd
@dcHeaderText
@dcColWidth
@dcAppendCol
@dcRemoveCol
@dcFind
@dcCancelEdit
@dcGetChecked
@dcColFormat

672

INDEX

 673

INDEX
@CRLF, 55, 668
@TAB, 55, 668
About, 96
Abs, 96
Acos, 97
AddExtender, 97–99
AppExist, 99–100
AppWaitClose, 100–101
ArrayFileGet, 101–2
ArrayFileGetCsv, 102–3
ArrayFilePut, 103–4
ArrayFilePutCsv, 104–5
ArrayFromStr, 105–6
ArrayInsert, 106–7
ArrayItemize, 107
Arrayize, 107–8
ArrayLocate, 108–9
ArrayRedim, 109–10
ArrayRemove, 110–13
ArrayReverse, 112–13
Arrays, 91–93
ArraySearch, 113–15
ArraySort, 115–18
ArraySwapElements, 118–19
ArrayToStr, 119
ArrDimension, 120–21
ArrInfo, 121–22
ArrInitialize, 122–23
ArrRemove, 123–24
Asin, 124–25
AskColor, 125
AskDirectory, 126–28
AskFileName, 128–31
AskFileText, 131–32
AskFont, 132–34
AskItemList, 51, 134–36
AskLine, 41, 136–38
AskPassword, 138
AskTextBox, 139
AskYesNo, 41, 140

Atan, 141
Average, 141
Beep, 42, 141–42
Binary Operations, 142–43
BinaryAlloc, 143
BinaryAllocArray, 144–45
BinaryAnd, 146–47
BinaryBufInfo, 147
BinaryCheckSum, 147–48
BinaryClipGet, 148–50
BinaryClipPut, 150–51
BinaryCompare, 151–52
BinaryConvert, 152–53
BinaryCopy, 153–54
BinaryEodGet, 154–55
BinaryEodSet, 155
BinaryFree, 155–56
BinaryHashRec, 156–58
BinaryIncr, 158
BinaryIndex, 158–59
BinaryIndexBin, 159–60
BinaryIndexEx, 160–61
BinaryIndexNC, 162–63
BinaryOleType, 163–65
BinaryOr, 165–67
BinaryPeek, 167
BinaryPeekHex, 167–68
BinaryPeekStr, 168–69
BinaryPeekStrW, 169
BinaryPoke, 170
BinaryPokeHex, 170–71
BinaryPokeStr, 171–72
BinaryPokeStrW, 172–73
BinaryRead, 173
BinaryReadEx, 173–74
BinaryReplace, 175
BinarySort, 175–77
BinaryStrCnt, 177–78
BinaryTagExtr, 178–79
BinaryTagFind, 179–81

INDEX

674

BinaryTagIndex, 181–82
BinaryTagInit, 182–84
BinaryTagLen, 184–85
BinaryTagRepl, 186–88
BinaryWrite, 188
BinaryWriteEx, 188–89
BinaryXlate, 190–91
BinaryXor, 191–92
Break, 192–93
ButtonNames, 193–94
Call, 194–95
Cancel, 61–62
Ceiling, 196
Char2Num, 196–97
ChrGetCodePage, 197
ChrHexToString, 197–98
ChrHexToUnicode, 198
ChrSetCodePage, 198–99
ChrStringToHex, 199
ChrStringToUnicode, 199–200
ChrUnicodeToHex, 200
ChrUnicodeToString, 200–201
ClipAppend, 201
ClipGet, 201–2
ClipGetEx, 202
ClipHasFormat, 203–4
ClipPut, 204
Command Line Parameters, 20
Comments, 86–87
ComputerNameGet, 204–5
ComputerNameSet, 205–6
Conditional Branching

For, 389–90
ForEach, 390–92
If, 398–401
Select, 555–56
Switch, 600–601
Terminate, 603–4
While, 621–22

Constants, 79, 667–69
Floating Point, 79, 669
Integer, 79
Predefined, 81, 667
String, 80, 668

Continue, 206–7

Cos, 207–8
Cosh, 208
CreateObject, 208
CRLF, 64
CurrentFile, 208–9
CurrentPath, 209–10
CurrFilePath, 210
DataCast, 211
DDEExecute, 211–12
DDEInitiate, 212–13
DDEPoke, 213–14
DDERequest, 214–15
DDETerminate, 215–16
DDETimeout, 216
Debug, 64, 217–19
DebugData, 219–20
DebugTrace, 220–24
Decimals, 224–25
Dialog, 225–65
Dialog - Using Internet Explorer Controls

in WIL Dialogs, 256–65
DialogControlGet, 265–70
DialogControlSet, 271–78
DialogControlState, 279–84
DialogObject, 284–87
DialogProcOptions, 287–95
DirAttrGet, 296
DirAttrGetEx, 296–99
DirAttrSet, 299
DirAttrSetEx, 299–302
DirChange, 46, 302–3
DirExist, 303
DirGet, 46, 303–4
DirHome, 304
DirInfoToArray, 304–6
DirItemize, 53–54, 306–7
DirMake, 307
DirRemove, 307–8
DirRename, 308
DirScript, 308–9
DirSize, 308–10
DirWindows, 310–11
DiskExist, 311
DiskFree, 311–12
DiskInfo, 312–13

INDEX

 675

DiskScan, 313–14
DiskSize, 314–15
DiskVolInfo, 315
Display, 40, 316
DllCall, 316–19
DllCall Additional Information, 321–22
DllCallbackCreate, 319–20
DllCallbackDestroy, 321
DllCallCdecl, 323–25
DllFree, 325–26
DllHinst, 326–27
DllHwnd, 327
DllLastError, 327–28
DllLoad, 328–33
DllStructAlloc, 329–33
DllStructFree, 330–33
DllStructPeek, 331–33
DllStructPoke, 332–33
DOSVersion, 333
dotNet, 74–77
Drop, 334
DropWild, 334–35
Dynamic Dialogs, 245
EndSession, 45, 335–36
Environment, 56, 336–37
EnvironSet, 337–38
EnvItemize, 338–39
ErrorEvent, 339
ErrorMode, 48, 339–41
Errors, 47–50, 93–94

see also. LastError, IntControl 73,
ErrorMode, Debug

Exclusive, 341–42
Execute, 342
ExeTypeInfo, 342–43
Exit, 343–44
Exp, 344
Extenders, 62–63
Fabs, 344
File Delimiters, 67–68
FileAppend, 345
FileAttrGet, 345–46
FileAttrGetEx, 346–49
FileAttrSet, 349
FileAttrSetEx, 349–51

FileBaseName, 351–52
FileClose, 352–53
FileCompare, 353–54
FileCopy, 46, 354–55
FileCopyAttr, 355–56
FileCreateTemp, 357
FileDelete, 46, 357–58
FileDigest, 358–59
FileExist, 47, 359–60
FileExtension, 360
FileFullName, 360–61
FileGet, 361
FileGetW, 362
FileInfoToArray, 362–64
FileItemize, 51, 364–65
FileItemPath, 365
FileLocate, 366–67
FileLockItemize, 366–67
FileMapName, 367–69
FileMove, 369–70
FileMoveAttr, 370–71
FileNameLong, 371
FileNameShort, 372
FileOpen, 372–74
FilePath, 374
FilePut, 374–75
FilePutW, 375
FileRead, 375–76
FileRename, 47, 376–77
FileRoot, 377
FileSize, 378
FileSizeEx, 378–79
FileTimeCode, 379–80
FileTimeGet, 380–81
FileTimeGetEx, 381–82
FileTimeSet, 382
FileTimeSetEx, 382–83
FileTimeTouch, 383–84
FileVerInfo, 384–86
FileWrite, 387
FileYmdHms, 387–88
FindWindow, 388
Floor, 388–89
Flow Control, 32–37
For, 389–90

INDEX

676

ForEach, 390–92
GetExactTime, 392
GetObject, 392
GetTickCount, 393
GoSub, 393–94
Goto, 394
IconExtract, 395
IconInfo, 395–97
IconReplace, 397–98
Identifiers, 81
If, 29–32, 398–401
IgnoreInput, 401
INDEX, 673
IniDelete, 401–2
IniDeletePvt, 402
IniItemize, 403
IniItemizePvt, 403–4
IniRead, 404–5
IniReadPvt, 405
IniWrite, 406
IniWritePvt, 406–7
InstallFile, 407–8
Int, 408–9
IntControl, 65, 409–43
IsDefined, 443–44
IsFloat, 444–45
IsInt, 445
IsKeyDown, 445–46
IsLicensed, 446
IsNumber, 446–47
ItemCount, 447
ItemCountCsv, 447–49
ItemExtract, 449
ItemExtractCsv, 450–51
ItemInsert, 451–52
ItemLocate, 452
ItemLocateWild, 453
ItemRemove, 452–54
ItemReplace, 454–55
ItemSort, 455
KeyToggleGet, 455–56
KeyToggleSet, 456
Keywords, 84
LastError, 456–57
Log10, 457–58

LogDisk, 458
LogE, 458–59
Max, 459
Menu Files, 659–65
Message, 40, 459–60
Min, 460
Mod, 460–61
MouseClick, 461–62
MouseClickBtn, 462–63
MouseCoords, 463
MouseInfo, 463–65
MouseMove, 465–66
MousePlay, 466–68
MsgTextGet, 468–69
Net101, 469
NetInfo, 469–70
Num2Char, 470
ObjectClose, 470–71
ObjectClrNew, 471–73
ObjectClrOption, 473–75
ObjectClrType, 475–76
ObjectConstantsGet, 476–78
ObjectConstToArray, 478–79
ObjectCreate, 479–81
ObjectEventAdd, 482–84
ObjectEventRemove, 484–86
ObjectGet, 486–88
ObjectOpen, 488
ObjectType, 488–91
ObjectTypeGet, 491–95
OLE / COM, 68–74
Operators, 84–86

Precedence, 86
Parameters

Commandline, 20
Function, 87–88

ParseData, 495
Partial Window Names, 65–66
Pause, 40, 495–96
PipeClientClose, 496
PipeClientOpen, 496–98
PipeClientSendRecvData, 498
PipeInfo, 498–99
PipeServerClose, 499
PipeServerCreate, 499–500

INDEX

 677

PipeServerRead, 500
PipeServerWrite, 500–501
PlayMedia, 501–2
PlayMidi, 502–3
PlayWaveForm, 503–4
Predefined Constants, 667
Print, 504
PtrGlobal, 504–5
PtrGlobalDefine, 505–6
PtrGlobalTest, 506
PtrPersistent, 507
Random, 508
RegApp, 509–10
RegCloseKey, 510–11
RegConnect, 511–12
RegCreateKey, 512
RegDeleteKey, 513
RegDelValue, 513–14
RegEntryType, 514–18
RegExistKey, 518
RegExistValue, 518–19
Registration Database Operations, 508–9
RegLoadHive, 519–20
RegOpenFlags, 520–21
RegOpenKey, 521–22
RegOpenKeyEx, 522–23
RegQueryBin, 523–24
RegQueryDword, 524–25
RegQueryEx, 525–26
RegQueryExpSz, 526–27
RegQueryItem, 527–28
RegQueryKey, 528
RegQueryKeyLastWriteTime, 528–29
RegQueryKeys, 529
RegQueryMulSz, 529–30
RegQueryQword, 530–31
RegQueryStr, 531–32
RegQueryValue, 532–33
RegSetBin, 533–34
RegSetDword, 534–35
RegSetEx, 535
RegSetExpSz, 536–37
RegSetMulSz, 537
RegSetQword, 538
RegSetValue, 538–39

RegUnloadHive, 539–40
Reload, 540
Return, 540–41
RtStatus, 541–42
Run, 38, 39, 542–43
RunEnviron, 543–44
RunHide, 544–45
RunHideWait, 545–46
RunIcon, 39, 546
RunIconWait, 546–47
Running DOS programs, 56
Running Programs, 38–39
RunShell, 39, 547–48
RunWait, 548–49
RunWithLogon, 39, 549–53
RunZoom, 38, 554
RunZoomWait, 554–55
Sample WBT File, 58–60
Select, 555–56
SendKey, 556–60
SendKeysChild, 560–61
SendKeysTo, 57, 561–62
SendMenusTo, 562–63
SendMessageA, 563
SendMessageW, 563–64
ShellExecute, 39, 564–65
ShortcutDir, 565–68
ShortcutEdit, 568–69
ShortcutExtra, 570–71
ShortcutInfo, 571–73
ShortcutMake, 573–74
Sin, 574
Sinh, 574–75
SnapShot, 575–76
Sounds, 576–77
SoundVolume, 577
Sqrt, 577–78
StrByteCount, 578
StrCat, 578–79
StrCharCount, 579
StrClean, 580–81
StrCmp, 581
StrCnt, 581–82
StrFill, 582–83
StrFix, 583–84

INDEX

678

StrFixBytes, 584–85
StrFixBytesL, 585
StrFixChars, 585–86
StrFixCharsL, 586
StrFixLeft, 586–87
StriCmp, 587–88
StrIndex, 588–89
StrIndexNc, 589–90
StrIndexWild, 590
StrInsert, 590–91
StrLen, 591–92
StrLenWild, 592
StrLower, 592–93
StrOverlay, 593
StrReplace, 594
StrScan, 594–95
StrSub, 595–96
StrSubWild, 596
StrTrim, 597
StrTypeInfo, 597–99
StrUpper, 599–600
Substitution, 82–83

and StrCat, 578–79
Switch, 600–601
SysParamInfo, 601–2
Tan, 602–3
Tanh, 603
Terminate, 603–4
TerminateApp, 604–5
Termination of WIL, 64
Things To Know, 61–68
TimeAdd, 606
TimeDate, 606–7
TimeDayofWeek, 607–8
TimeDelay, 42, 608
TimeDiff, 608–9
TimeDiffDays, 609–10
TimeDiffSecs, 610
TimeFunctions, 605–13
TimeJulianDay, 610
TimeJulToYmd, 611–12
TimeSubtract, 612
TimeWait, 612–13
TimeYmdHms, 613
UacElevationLevel, 613–14

UacExePromptTest, 614
UacManifestSettings, 615
User Defined Functions, 88–91
User-Defined-Callback, 246
Variables, 28, 81–82
VarType, 615–17
Version, 617
VersionDLL, 617–18
WaitForKey, 618–19
WaitForKeyEx, 619–20
WallPaper, 620–21
While, 621–22
WIL Language Components, 79–88
WIL Tutorial, 19–60
WinActivate, 44, 622
WinActiveChild, 622–23
WinArrange, 623–24
WinClose, 44, 624
Window Management, 42–46
Window Names, 65–66
WindowOnTop, 624–25
WinExeName, 625–26
WinExist, 44–45, 626–27
WinExistChild, 627–28
WinGetActive, 628
WinHelp, 628–30
WinHide, 630–31
WinIconize, 42, 631
WinIdGet, 631–32
WinIsDOS, 632–33
WinItemChild, 633
WinItemize, 634
WinItemizeEx, 634–35
WinItemNameId, 635–36
WinItemProcId, 636–37
WinMetrics, 637–39
WinName, 640
WinPlace, 640–41
WinPlaceChild, 641–42
WinPlaceGet, 642–43
WinPlaceSet, 643–44
WinPosition, 644–45
WinPositionChild, 645
WinResources, 646–47
WinShow, 43, 647

INDEX

 679

WinState, 647–48
WinSysInfo, 648–49
WinTitle, 649
WinVersion, 650–52
WinWaitChild, 653
WinWaitClose, 653–54

WinWaitExist, 654–55
WinWaitReady, 655
WinZoom, 42, 655–56
Yield, 656
Yields, 657

