

WinBatch Studio

17

WinBatch Studio
WinBatch Studio Overview

WinBatch Studio is an ASCII text editor capable of editing numerous WinBatch
files of an almost unlimited size (limited only by available Windows memory).
WinBatch Studio has many features designed for creating and maintaining
WinBatch program source code. Build, debug and run your WinBatch programs
directly from WinBatch Studio.
As an ASCII text editor, WinBatch Studio allows you to open numerous .wbt files
at once, print half sized "two-up" pages side by side in landscape orientation, print
headers and footer text (document name, date and time, page number) and, merge
files together.

WinBatch Studio Menus
File Menu

The File menu offers the following commands:
New Creates a new document.
Open… Opens an existing document.
Close Closes an opened document.

Merge… Inserts the contents of a new document into the
current document.

Save Saves an opened document using the same file name.

WinBatch Studio

18

Save As… Saves an opened document to a specified file name.
Save All Saves all opened documents.

Revert Re-reads the current document from disk, returning
to its original state.

Page Setup… Displays printing options.
Print Setup… Selects a printer and printer connection.
Print… Prints a document.

Print Preview Displays the document on the screen as it would
appear printed.

Send… Sends the document using default email client.
Properties… Displays information about the current document.
[Recent File List] Displays a list of previously opened documents.
Exit Exits WinBatch Studio.

Edit Menu
The Edit menu offers the following commands:

Undo Reverse previous editing operation.
Redo Reverse previous undo operation.
Cut Deletes data from the document and moves it to the

clipboard.
Copy Copies data from the document to the clipboard.
Paste Pastes data from the clipboard into the document.
Delete Deletes data from the document.
Copy Other Copies specific data from the document to the

clipboard.
Cut Other Cuts specific data from the document to the clipboard.

Change case Changes the case of selected data.
Quick Help Insert Parameters

 Inserts function parameters, left of the caret.

Auto Complete
Displays a list of WIL and WinBatch functions that
match a partially typed in word to the left the insertion
caret. When a listed function name is selected and the
Enter key is pressed or a function name is double-
clicked, the partially typed work is replaced with the
full function name.

WinBatch Studio

19

Select All Selects all the data in the document.

View Menu
The View menu offers the following commands:

Toolbars… Shows, hides, or customizes the toolbars.
Status Bar Shows or hides the status bar.
Project Tree Shows or hides the dialog toolbar window

containing a hierarchical display of all user created
projects associated with the current workspace.

Output Shows or hides the output window.
Watch Shows or hides the watch window.
Tabbed View Shows or hides tab style file viewing in the main

editor window. Tabs are located Microsoft Excel
style near the bottom of the main window.

Options… Editor, keyboard, and file specific settings are
maintained in this dialog box. See help file for
details.

Search Menu
The Search menu offers the following commands:

Find… Searches the current document for the specified text.
Find Next Repeats the last find operation, using the same options,

for the next instance.
Find Prev Repeats the last find operation, using the same options,

for the previous instance.
Replace… Searches the current document for the specified text, and

replaces the found text with specified text.
Find in Files… Searches one or more files for the specified text. To halt

a search relaunch the "File in Files" dialog and then
click the "Stop Find" button or press the return key.

Go To Line… Moves the caret to the specified line number.
Match Brace If the caret is placed on a brace character "().{}, or []"

the caret is moved to the matching brace character.

Projects Menu
The Projects menu offers the following commands to create, modify, and control
workspaces and projects. Many changes made with these menu items are reflected
in the project dialog toolbar. Project related menu items are only enabled when the
project toolbar window is visible.

WinBatch Studio

20

Add New Project - Displays a dialog that allows you to
start a new project in the current workspace or as a
sub project of the current project in the workspace.

 New File - Displays a dialog that allows you to add
a new file item in the current project. Note that the
file is not physically created on the computer's file
system.
Existing Files - Displays a standard file selection
dialog that allows you to add one or more files to
the current project.

Current File - Adds the file currently displayed in
the main window to the current project.

Open Project File Opens the currently selected file in the main file
viewing area. Note that double-clicking a file item
in the project tree dialog toolbar will also open the
selected file in the main file viewing area of the
editor.

Remove Removes the currently selected file or project from
its containing project or workspace. Note that
removed files are not deleted from the file system
when they exist on a file system.

Workspaces… Display the workspace manager dialog. This dialog
allows you to create, remove, rename or select a
workspace as the active workspace. A workspace
consists of user defined tools, projects, project files
and open windows.

The dialog displays a list of workspaces along with
a toolbar. Use the list's toolbar buttons and the
dialog's buttons to perform the following tasks:
 New button - Create a new workspace.
Enter the workspace name in the edit box displayed
in the toolbar list and press return to create the
workspace.
 Delete button - Deletes a selected workspace
from the list.
 Move up button - Moves a selected
workspace name toward the top of the workspace
list. This change is reflected in the workspace
MRU.
 Move down button - Moves a selected
workspace name toward the bottom of the
workspace list. This change is reflected in the

WinBatch Studio

21

workspace MRU.
 Open - Makes the selected workspace the
current workspace and closes the Workspace
Manger dialog.
 Save - Saves the current state of the selected
workspace and closes the Workspace Manger
dialog. When a workspace state is saved all
currently open document windows will be restored
the next time the workspace is loaded into the
editor.
 Done - Processes changes and closes the
dialog.
 Cancel - Closes the dialog without
processing changes.

Close Workspace Closes a currently open workspace.
[Window Manager] Lists the names of the most-recently-used (MRU)

workspaces. Selecting a workspace name makes it
the active workspace.

Debug Menu
WinBatch Studio offers a complete interactive debugging environment for WIL
script files. To debug a WIL script, first make sure the saved file is loaded and is
the active document. The Debug menu offers the following commands:

Run Runs the script in the active window using the 32-bit
interpreter.

Customize Tools… Allows a program or WIL script to be added to the
Project menu.

Dialog Editor Provides a convenient method of creating dialog box
templates for use in your WinBatch programs.

Compiler Executes the 32-bit Compiler tool.
Type Viewer Executes the development tool that assists you in writing

Component Object Model (COM) Automation based
WIL scripts.

Compiler (x64) Executes the 64-bit Compiler tool.
Run (x64) Runs the script in the active window using the 64-bit

interpreter.
Debug Runs the script in Debug mode.
Step Into Executes the current line of the script. If the current line

is a goto, gosub, or call command, execution stops at the
first line of the goto, gosub, or call code.

Step Over Executes the current line of the script. If the current line

WinBatch Studio

22

is a goto, gosub, or call command, all the code at the
goto, gosub, or call location is also executed.

Run To Cursor Begins executing script commands at the current
location and continues to the point in the script where
the cursor (caret) is located.

Stop Debugging… Stops execution of the script.
X64 Debugger Toggles between 64-bit and 32-bit debugger modes.
Debug
Parameters…

Display the Debug Parameter dialog. This dialog allows
you to create, remove, move and change the parameters
passed to a WIL script.

Insert/Remove
Breakpoint

Inserts a breakpoint at the current line, or removes it if it
already exists. When execution of the script is initiated
with the Go or Run To Cursor commands, execution
will still stop if a line with a breakpoint is encountered.

Remove All
Breakpoints

Removes all defined breakpoints in the current script.

Window Menu
The Window menu offers the following commands, which enable you to arrange
multiple views of multiple documents in the application window:

New Window Creates a new window that views the same document.
Split Split the active window into panes.
Cascade Arranges windows in an overlapped fashion.
Tile Horizontally Arranges windows in non-overlapped tiles horizontally.
Tile Vertically Arranges windows in non-overlapped tiles vertically.
Close All Closes all open windows.
Arrange Icons Arranges icons of closed windows.
[Window Manager] Lists all open windows. Multiple selections may be

made.

Help Menu
The Help menu offers the following commands, which provide assistance with this
application:

WinBatch Studio
Help

Launches the WinBatch Studio help file.

Consolidated WIL
Help

Launches the Consolidated WIL help file. This help file
consolidates all of the various WinBatch and Extender
help files into one single help file.

WinBatch Studio

23

About WinBatch
Studio…

Displays the version number of this application.

Context Menu
WinBatch has a completely configurable context menu that can be accessed by
clicking the right mouse button anywhere within an open file. Right clicking
results in a context menu drop down list filled with many useful macros.

Cut Cuts the current selection to the clipboard.
Copy Copies the selected text to the Windows clipboard.

Paste Pastes text from the clipboard into the active document
window.

Undo Allows you to "undo" the most recent editing action

Find All

Searches the current document for all instances of
specified text. Search results are displayed in the Find
Results tabbed window near the bottom of the WinBatch
Studio application frame window.

Insert Unicode
Text Allows you to insert Unicode text into the editor.

Keyword Lookup Looks up highlighted keyword and displays help file.
Insert WIL
Function…. Select from a list of functions, to insert into script.

Consolidated WIL
help file Launches the Consolidated WIL help file.

Help Options

Insert WIL Function specify whether or not to include
a description.
Show Hints Now displays WinBatch Studio 'hints'
dialog.

Code Blocks

Comment Block of Code - easily comment out blocks
of code.
Uncomment Block of Code - easily uncomment blocks
of code.
Create Dialog Callbacks in Clipboard - options for
dynamically creating callback procedures for dialog
code.
Convert Dialog Callback Constants - Converts all
instances of old style dialog constants to the new
intrinsic dialog related constants in the currently viewed
document. Adds a comment character to the beginning
of any line that assigns a value to one of the known old
style constants.
Insert Block - various useful blocks of code to insert

WinBatch Studio

24

into scripts.

More

Additional menu options.
UDF/UDS Colorization - Adds or removes highlighted
string to the list of functions to get colorized.
Highlight variable/label – Add or remove color code
highlighting for a variable or label.
Toggle Bookmark - Places a bookmark on the current
line if one does not already exist, or removes it if it
does.
Copy current line - Copies the entire line to the
Windows clipboard.
Cut current line - Cuts the entire line.
Edit highlighted file - Opens the highlighted filename
in the editor.
Browse highlighted file - Opens the highlighted
filename in the file Browser.
How do I? – Explains how to customize this menu.

Using the Windows Interface Language, you can write your own macros and place
them on this menu for easy access. Right click in the file, from the context menu
dialog box select:

More | How do I? | Customize this menu.

Note: For more information on editing menu files, see the section "Menu Files" in
the Windows Interface Language Reference manual or help file.

Using WinBatch

25

Using WinBatch
Creating WinBatch Script Files

WinBatch is a script file interpreter. Before you can do anything useful with the
WinBatch interpreter, you must have at least one WinBatch script file to interpret.
Your WinBatch installation puts several sample scripts into your
WinBatch\Samples directory.
WinBatch script files must be formatted as plain text files. You can create them
with WinBatch Studio (included), the Windows Notepad or another text editor.
Word processors can also save scripts in plain text formatted files.
When you installed WinBatch, an association is automatically established between
WinBatch and the .WBT file extension. The .WBT extension is used in this
manual for batch file extensions, but you can use other file types as well. If you
want to double click on a batch file and have Windows run it, be sure that you
associate it in Windows with your WinBatch executable program file.
Each line in a WinBatch script file contains a statement written in WIL, Wilson
WindowWare’s Windows Interface Language.
A statement can be a maximum of 2048 characters long (refer to the WIL
Reference Manual for information on the commands you can use in WinBatch).
Indentation does not matter.
A statement can contain functions, commands and comments. Functions and
constants are not case-sensitive.
You can give each WinBatch script file, a name which has an extension of WBT
(e.g. TEST.WBT). We’ll use the terms: WinBatch script files and WBT files,
interchangeably.

WinBatch Operation: Running WinBatch
Utilities

WinBatch utilities are very versatile. They can be run from:
• icons in the Windows Explorer.
• as automatic execution macros for Windows, via the Windows "StartUp"

directory.
• from macros in word processors and spreadsheets.

Using WinBatch

26

• from a command line entry, such as the Windows logo key +R
Taskbar menu option in Windows.

• by double clicking or dragging and dropping file names on the WinBatch
icon.

• from menu items on the Windows "System Tray" using PopMenu, an
accessory program included with WinBatch.

• from other WinBatch scripts to serve as single or multiple "agents", event
handlers, or schedulers.

• from any Windows application or application macro language that can
execute another Windows program. Software suite macro languages and
application builders like Visual Basic and PowerBuilder are examples of
these.

WinBatch system utilities run like any other Windows programs. They can run
from a command line, a desktop icon, or from a file listing such as the Windows
File Managers or Explorer.
WinBatch utilities are usually run as files with the extension .WBT. They can
accept passed parameters when run from a command line.
This capability can be used from the Run command line in Windows. You can
access the Run command by pressing the Windows logo key +R.
Parameters can be also be passed through the command line entry, included in the
item properties of any icon in the Explorer. Finally, an application can send
parameters to a WinBatch utility it launches, from a command line, or from a
function in a macro language.
A command like this runs a WinBatch file from a command line or an icon:
WINBATCHEXENAME filename.wbt param1 param2 ... param[n]
This command line can be entered into a Command Line text entry box like this
one from the Windows Run command line.

Using WinBatch

27

The command line is longer than the dialog can show, but it can be easily edited
with the arrow keys.
"file.wbt" is any valid WBT file, and is a required parameter.
"myparam1 myparam2 ... myparam[n]" are optional parameters to be passed to the
WBT file on startup. Each is delimited from the next by one space character.
These parameters will be automatically inserted into variables named param1,
param2, … param[n]. The WinBatch utility will be able to use these. An
additional variable, param0, gives you the total number of command-line
parameters.
Example command line:

"C:\Program files (x86)\WinBatch\System\Winbatch.exe" test.wbt Bob Joe
Sue

Example script:
;contents of test.wbt
names=StrCat(param1,@CRLF,param2,@CRLF,param3)
Message("Names",names)
Exit

A command like this runs the WinBatch+Compiler from a command line or an
icon:

c:\Program Files (x86)\WinBatch\System\WBCompiler.exe {.wbt}
c:\Program Files (x86)\WinBatch\System\WBCompiler.exe {.cmp}

A command like this runs the WinBatch+Compiler in Batch compile mode from a
command line or an icon:

c:\Program Files (x86)\WinBatch\System\WBCompiler.exe {.cmplist}

For further details see: Batch Compile (page 132)

Using Icons to Pass Parameters to
WinBatch Utilities

WBT files run from the Explorer as shortcut icons must have their complete path
in the Properties dialog box in order for command line parameters to be received.
In order to pass parameters to a WinBatch .wbt file, you must run the WinBatch
executable, itself, and it must be followed by the name of the WinBatch script file
and any other desired parameters.
For example, the command line for "MAIL.WBT", an imaginary WinBatch
utility that runs mail with a password passed as a parameter might be:

Using WinBatch

28

"C:\PROGRAM FILES (x86)\WINBATCH\SYSTEM\WINBATCH.EXE C:\PROGRAM FILES
(X86)\WINBATCH\MAIL.WBT" PASSWORD

Note: the previous command line should all be on one line.
To edit icon properties, highlight the icon, hold down ALT, and press ENTER.
The program item properties box should look like the following:

Using WinBatch

29

Example: Displaying passed parameters in a message box.
To determine the total number of command line parameters, display the param0
variable in a message box.
WinBatch works like the DOS Batch language when inserting parameters into text.
Enclosing them in percent (%) signs works in WinBatch, too.
This example is a simple, one line WinBatch function that:

1. Displays a Message box with an OK button.
2. Specifies a title.
3. Specifies a message.
4. Puts varying information into the title or the message.

The Message function has this form:

Message("title in quotes","message in quotes")

The actual statement used to produce this dialog box was:

Message("%param0% Parameter(s)", "The first was==> %param1%")

It produced:

The command line that executed the utility producing the statement above was:

"C:\PROGRAM FILES (X86)\WINBATCH\SYSTEM\WINBATCH.EXE"
"C:\TEMP\MESSAGE.WBT" 97.987

Note: Full path names were used for both the WinBatch executable file and for
the WinBatch utility. Spaces separate the three parts of the command line. Quotes
are necessary around path and filenames, if the path name contains spaces.
Otherwise the quotes are ignored.

Using WinBatch

30

Passing Parameters Between WinBatch
Script Files

You can pass command line parameters from one WinBatch script file to another
WinBatch script file. To do this, place percent characters (%) around the variables
as in: %variable%.
The first WBT calls a second WBT then passes three parameters.

Call("test.wbt", "Fred Alan Jeff")

TEST.WBT contains the following line:

Message("Names are", "%param3% %param2% %param1%")

Accessing Help Files
Wilson WindowWare offers several different help files depending on what is
installed on the system. The Consolidated WIL Help file acts as a single resource
for many of the various help files. It combines multiple .CHM files at run time,
allowing them to all be consolidated into a single Help system. So, as you install
some new Wilson WindowWare product (i.e. WIL Extenders) you will see them
show up in the table of contents of this help file.
The ConsolidatedWIL.CHM help file can be accessed from:

• Windows Start menu (Start | All Programs | WinBatch)
• WinBatch Studio's Help menu.
• WinBatch Studio's Context menu by clicking the right mouse button

anywhere within an open file.

Using WinBatch

31

Reference Guides
These help files contain tutorials and documentation for various standard scripting
functions. WinBatch and the WinBatch+Compiler are comprised of many pieces;
the Windows Interface Language and special WinBatch specific commands are
documented in separate reference guides.
These individual help files can be accessed from the Windows Start menu: Start |
All Programs | WinBatch, from WinBatch Studio's context menu by clicking the
right mouse button anywhere within an open file, or from inside the
ConsolidatedWIL.CHM (Contents tab).

COM.chm
This help file contains documentation on WIL COM functionality. It also contains
functions and lots of sample code.

WindowsInterfaceLanguage.chm
This help file contains documentation on all of the standard Windows Interface
Language (WIL) functions. It also contains a tutorial that can be used to help get
you started. The section titled 'Things to know' contains important information on
using WIL.

WinBatch.chm
This help file contains documentation on the various utilities included with
WinBatch: Compiler, WIL Dialog Editor, Window Information Utility, File
Browser, FileMenu, PopMenu, WinMacro and the WIL Type Viewer. It also
contains functions specific to WinBatch: ExtractAttachedFile, various Box
functions and Service functions.

WebBatch.chm
This help file contains functions documentation specific to WebBatch: WebOut,
WebOutFile, WebParamData, etc.
This help file can be accessed from the Windows Start menu: Start | All Programs |
WebBatch or from inside the ConsolidatedWIL.CHM (Contents tab).
This help file will only be installed with WebBatch.

WIL Extenders
These various help files contain documentation for each of the individual WIL
Extenders.

• ADSI.chm
• ControlManager.chm

Using WinBatch

32

• CPU.chm
• EHLLAPI.chm
• FileSearch.chm
• HugeMath.chm
• IPGrabber.chm
• MAPI.chm
• NetwareX.chm *
• ODBC.chm
• ODBCTutorial.chm
• Pixie.chm *
• Postie.chm
• Printer.chm
• Process.chm
• RAS.chm
• Reggie.chm
• Serial.chm
• ShellOperations.chm
• TerminalServices.chm
• WILX.chm
• Win32Network.chm
• WinInet.chm
• Winsock.chm
• Zipper.chm

(*no longer supported)
WIL language extenders are among the most useful parts of the WIL language.
Network connectivity, special arithmetic operations, and other capabilities can be
added to WIL with extenders. Extenders are often available for download on the
web site : http://www.winbatch.com/download.html.
Software developers who want to create custom extensions to the WIL language
may use the development kit called "WIL Extender SDK”. The actual extender
must be written as a DLL using C or C++.
Each individual extender has a help file that explains how to use the functions in it.
These help files can be accessed from the Windows Start menu: Start | All
Programs | WinBatch, from WinBatch Studio's context menu by clicking the right
mouse button anywhere within an open file, or (if they are installed) from inside
the ConsolidatedWIL.CHM (Contents tab).

Using WinBatch

33

Utilities
These help files contain documentation for utilities the can help developers design
and create code. Many of these tools are installed by default.

• Browser.chm – File Browser.
• WinBatch.chm - WIL Dialog Editor, FileMenu & PopMenu.
• WILTypeViewer.chm - WIL Type Viewer.
• WinBatchStudio.chm - WinBatch Studio.
• WinMacro.chm – WinMacro.
• WMI.chm – WMI.

WinBatch Functions

35

WinBatch Functions
Function Reference Introduction

This section includes only those additional WinBatch functions which do not
appear in the WIL Reference Manual. The WIL Reference Manual is your
primary reference for the functions available in WinBatch.
Note: The functions listed under the See Also headings may be documented either
in this User’s Guide or in the WIL Reference Manual.
Some of the 'box' functions cannot be used with the FileMenu or PopMenu
utilities. See the documentation, for each individual utility.

Function List

Simple Box Functions
BoxOpen(title, text)
Opens a WinBatch message box.
BoxShut()
Closes the WinBatch message box.
BoxText(text)
Changes the text in the WinBatch message box.
BoxTitle(title)
Changes the title of the WinBatch message box.

Graphical Box Functions
BoxBitmap(box ID, coordinates, filename, stretch-mode)
Displays a bitmap in a WinBatch box
BoxButtonDraw(box ID, button ID, text, coordinates)
Creates a push-button in a WinBatch box.
BoxButtonKill(box ID, button ID)
Removes a push-button from a WinBatch box.
BoxButtonStat(box ID, button ID)
Determines whether a push-button in a WinBatch box has been pressed.
BoxButtonWait()
Waits for any button in any box to be pressed.

WinBatch Functions

36

BoxCaption(box ID, caption)
Changes the title of a WinBatch box.
BoxColor(box ID, color, wash color)
Sets the background color for use with a WinBatch object.
BoxDestroy(box ID)
Removes a WinBatch box.
BoxDrawCircle(box ID, coordinates, style)
Draws an ellipse in a WinBatch box.
BoxDrawLine(box ID, coordinates)
Draws a line in a WinBatch box.
BoxDrawRect(box ID, coordinates, style)
Draws a rectangle in a WinBatch box.
BoxDrawText(box ID, coordinates, text, erase flag, alignment)
Displays text in a WinBatch box.
BoxesUp(coordinates, show mode)
Displays WinBatch boxes.
BoxMapMode(box ID, map mode)
Sets the mapping mode for a WinBatch box.
BoxNew(box ID, coordinates, style)
Creates a WinBatch box.
BoxPen(box ID, color, width)
Sets the pen for a WinBatch box.
BoxTextColor(box ID, color)
Sets the text color for a WinBatch box.
BoxTextFont(box ID, font-name, size, style, pitch & family & character-set)
Sets the font for a WinBatch box.
BoxUpdates(box ID, update flag)
Sets the update mode for, and/or updates, a WinBatch box.

Drawing Stack Management
BoxDataClear(box ID, tag)
Removes commands from a WinBatch box command stack.
BoxDataTag(box ID, tag)
Creates a tag entry in a WinBatch box command stack.

WinBatch Specific Functions
Breakpoint
Causes a breakpoint on the next statement when used with a script debugger, like

WinBatch Functions

37

WinBatch Studio. Otherwise the command does nothing, outside of WinBatch
Studio.
ExtractAttachedFile(source-name, target-name)
Extracts an embedded file from a compiled large EXE. {compiled version only}

Compiler Service Functions
SvcSetAccept(codes)
Specifies the control codes that the service will accept.
SvcSetState(state)
Updates the service control manager's status information for the service.
SvcWaitForCmd(timeout)
Waits or checks for receipt of a service control code. Note: In our shorthand
method for indicating syntax, on the following pages next to "parameters", the (s)
in front of a parameter indicates that it is a string. An (i) indicates that it is an
integer and a (f) indicates a floating point number parameter.

Simple Box Functions

BoxOpen
Opens a WinBatch message box.

Syntax:
BoxOpen (title, text)

Parameters:
(s) title title of the message box.
(s) text text to display in the message box.

Returns:
(i) always 1.

This function opens a message box with the specified title and text. The message
box stays in the foreground while the WIL program continues to process.
The title of an existing message box can be changed with the BoxTitle function,
and the text inside the box can be changed with the BoxText function.
Use BoxShut to close the message box.

Example:
BoxOpen("Processing", "Be patient")
TimeDelay(2)
BoxTitle("Still processing")
TimeDelay(2)
BoxText ("Almost done")

WinBatch Functions

38

TimeDelay(2)
BoxShut()

See Also:
BoxShut, BoxText , BoxTitle, Display, Message

BoxShut
Closes the WinBatch message box.

Syntax:
BoxShut ()

Parameters:
(none)

Returns:
(i) always 1.

This function closes the message box that was opened with BoxOpen.

Example:
BoxOpen("Processing", "Be patient")
TimeDelay(2)
BoxTitle("Still processing")
TimeDelay(2)
BoxText ("Almost done")
TimeDelay(2)
BoxShut()

See Also:
BoxOpen, BoxText, BoxTitle

BoxText
Changes the text in the WinBatch message box.

Syntax:
BoxText (text)

Parameters:
(s) text text to display in the message box.

Returns:
(i) always 1.

Example:
BoxOpen("Processing", "Be patient")
TimeDelay(2)

WinBatch Functions

39

BoxTitle("Still processing")
TimeDelay(2)
BoxText("Almost done")
TimeDelay(2)
BoxShut()

See Also:
BoxOpen, BoxShut, BoxTitle

BoxTitle
Changes the title of the WinBatch message box.

Syntax:
BoxTitle (title)

Parameters:
(s) title title of the message box.

Returns:
(i) always 1.

Example:
BoxOpen("Processing", "Be patient")
TimeDelay(2)
BoxTitle("Still processing")
TimeDelay(2)
BoxText("Almost done")
TimeDelay(2)
BoxShut()

See Also:
BoxOpen, BoxShut, BoxText, WinTitle

Graphical Box Functions
These WinBatch box functions generate attractive boxes with graphical interface
elements. With a small number of primitive functions, very complex screens may
be generated. The Box functions can draw lines, rectangles, circles, ellipses, text,
and even additional windows on the screen. Plus they provide control over the
size, placement, and color of the images.
The WinBatch setup program uses WinBatch box functions to display the GUI
part of the user interface. Additional "box-drawing" wbt files can be found in the
WinBatch\Samples subdirectory.
First, before we get into detailed descriptions of the box functions, we must define
two very important data types. These are the "coordinate" and the "color" data type
parameters.

WinBatch Functions

40

Coordinate Parameters
A coordinate is a WinBatch string variable (actually a list) containing four
numbers separated by commas. These four numbers define two points on the
screen. The first number is the "X" coordinate of the first point, the second
number is the "Y" coordinate of the first point, the third number is the "X"
coordinate of the second point, and finally the fourth number is the "Y" coordinate
of the second point.
The "0,0" point is in the upper left of the screen, and the "1000,1000" point is at
the lower right.
With just these two points, WinBatch can size and place a number of items.

Rectangles: The first point defines the upper left corner of a rectangle, and
the second point defines the lower right.
Circles and Ellipses: The first point defines the upper left corner of a
bounding box for the Ellipse, and the second point defines the lower right
corner of the bounding box. The ellipse will touch the bounding box at the
center of each side of the bounding box.
Lines: The two points represent the beginning and end of a line.
Windows: The first point defines the upper left corner of a window, and
the second point defines the lower right.

Color Parameters
A "color" data type is a WinBatch string variable (actually a list) containing three
numbers separated by commas. These three numbers define the amount of red,
green, and blue that the color has in it. Each number may vary from 0 (none) to
255 (max.). White has the maximum amount of all colors, while black lacks them
all.
A sample list of colors follows:

WHITE="255,255,255"
BLACK="0,0,0"
LTGRAY="192,192,192"
GRAY="128,128,128"
DKGRAY="64,64,64"
LTPURPLE="255,128,25

RED="255,0,0"
GREEN="0,255,0"
BLUE="0,0,255"
YELLOW="255,255,0
CYAN="0,255,255"
PURPLE="255,0,255

DKRED="128,0,0"
DKGREEN="0,128,0"
DKBLUE="0,0,128"
DKYELLOW="128,128,0
DKCYAN="0,128,128"
DKPURPLE="128,0,128

BoxBitmap
Displays a bitmap in a WinBatch box.

Syntax:
BoxBitmap(box ID, coordinates, filename, stretch-mode)

WinBatch Functions

41

Parameters:
(i) box ID the ID number of the desired WinBatch box..
(s) coordinates dimensions of button, in virtual units

(upper-x upper-y lower-x lower-y).
(s) filename specifies the name of a BMP file..
(i) stretch-mode specifies the mode to use when resizing the bitmap. See

below.

Returns:
(i) @TRUE on success; @FALSE on failure.

'stretch-mode' specifies the mode to use when resizing the bitmap. The Bitmap will
be stretched within the specified 'coordinates'. It can be one of the following:

Value Meaning
1 BLACKONWHITE: Performs a Boolean AND operation

using the color values for the eliminated and existing pixels.
If the bitmap is a monochrome bitmap, this mode preserves
black pixels at the expense of white pixels.

2 WHITEONBLACK: Performs a Boolean OR operation using
the color values for the eliminated and existing pixels. If the
bitmap is a monochrome bitmap, this mode preserves white
pixels at the expense of black pixels.

3 COLORONCOLOR: Deletes the pixels. This mode deletes
all eliminated lines of pixels without trying to preserve their
information.

4 HALFTONE: Maps pixels from the source rectangle into
blocks of pixels in the destination rectangle. The average
color over the destination block of pixels approximates the
color of the source pixels. Supported on Windows NT or
newer only.

The stretching mode defines how the system combines rows or columns of a
bitmap with existing pixels. The BLACKONWHITE and WHITEONBLACK
modes are typically used to preserve foreground pixels in monochrome bitmaps.
The COLORONCOLOR mode is typically used to preserve color in color bitmaps.
The HALFTONE mode is slower and requires more processing of the source
image than the other three modes, but produces higher quality images.
Note: In order for bitmaps to display properly in a WinBatch box, the rectangle
into which the bitmap is to be placed should have the same aspect ratio (the
relationship between the height and width) of the source bmp file.
However, the 1000x1000 coordinate system for WinBatch boxes, is not
straightforwardly compatible with the pixel count of the bitmap. Therefore to

WinBatch Functions

42

figure out what size of bitmap box to use, the bitmap aspect ratio must be
converted to the WinBatch coordinate system.
Usually you can just experiment with different WinBatch coordinates until you
find one that looks reasonable in your box. But for those who wish to work out the
coordinate transformations, here is some additional information.
On most standard monitors, the pixels on the monitor are square. The WinBatch
virtual pixels are not square. In full screen mode, where the WinBatch window
approximates the shape of the monitor, the WinBatch virtual pixels are wider than
they are tall.
On the monitor a 600x600 block of pixels would be square. In WinBatch
coordinates this would be 750x1000. A WinBatch virtual pixel is 75% as tall as it
is wide. For every 3 horizontal pixels you need 4 vertical pixels to make a square.
For example: If you have a bmp file of, say, 100x200 pixels and want to
determine what size box you need in WinBatch.

realWidth=100
realHeight=200
;Set scaling constant to any number you wish to adjust
;final size. In general stay within the range of 0.10 to 10.0
scalingconstant=1.0

virtualWidth=realWidth * 0.75 * scalingconstant
virtualHeight=realHeight * scalingconstant

;So if you wish the upper left corner of the bit map
;to start at virtual point 20,30 the coordinates
;could be generated as in

ulX=20
ulY=30

lrX=int(ulX+virtualWidth)
lrY=int(ulY+virtualHeight)

coordinates=strcat(ulX, ",", ulY, ",", lrX, ",", lrY)
;Or you could figure out what they are and hard code them.

Example 1:

bmp = FileLocate("Coffee Bean.bmp")
if bmp == ""
 Message("???", "Bitmap not found")
else
 boxID = 1
 coordinates = "100,100,900,900"
 stretchmode = 3
 BoxesUp("200,200,800,800", @normal)
 BoxCaption(boxID, "WinBatch BoxBitmap Example")
 BoxBitmap(boxID, coordinates, bmp, stretchmode)

WinBatch Functions

43

 TimeDelay(5)
endif
exit

Example 2:
For a slightly more fully fleshed out example, we'll take the BoxBitmap example
and convert the coordinates so that the Coffee Bean BMP file will display as a
square, as originally intended.

bmp = FileLocate("Coffee Bean.bmp")
if bmp == ""
 Message("???", "Bitmap not found")
else
 boxID = 1
 ;Coffee Bean.bmp is a 128x128 square bmp file
 realWidth=128
 realHeight=128
 ;Set scaling constant to any number you wish to adjust
 ;final size. In general stay within the range of 0.10 to 10.0
 scalingconstant=6.0

 virtualWidth=realWidth * 0.75 * scalingconstant
 virtualHeight=realHeight * scalingconstant
 ;So if you wish the upper left corner of the bit map
 ;to start at virtual point 20,30 the coordinates
 ;could be generated as in
 ulX=20
 ulY=30

 lrX=int(ulX+virtualWidth)
 lrY=int(ulY+virtualHeight)

 coordinates=strcat(ulX, ",", ulY, ",", lrX, ",", lrY)

 stretchmode = 3
 BoxesUp("200,200,800,800", @normal) ; Maintain monitor aspect ratio
 BoxCaption(boxID, "WinBatch BoxBitmap Example")
 BoxBitmap(boxID, coordinates, bmp, stretchmode)
 TimeDelay(5)
endif
exit

See Also:
BoxesUp, BoxNew

BoxButtonDraw
Creates a push-button in a WinBatch box.

Syntax:
BoxButtonDraw(box ID, button ID, text, coordinates)

WinBatch Functions

44

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(i) button ID the ID number from 1 - 16 specifying the desired

push-button. Maximum buttons allowed, 16.
(s) text text to appear in the button.
(s) coordinates dimensions of button, in virtual units (upper-x upper-y

lower-x lower-y).

Returns:
(i) @TRUE on success; @FALSE on failure.

Draws a button using standard Windows colors and fonts by specifying a unique
"ID", text and coordinates. If an existing button "ID" is re-used, the text will be
changed and then the button will be moved.
Note: If a button is moved, it is best to do so before the background is painted in
order to color over the button's original position. Moving buttons does cause some
"flashing" on the screen.
The BoxButtonDraw function, which draws buttons in a WinBatch "box"
window, is limited to 16 buttons per box window, but you can have up to 8
separate box windows, so you could have up to 128 buttons spread out over all the
box windows.

Example:
; sample code for BoxButtonDraw
bDraw1=1
bDraw2=2
bDraw3=3
BoxesUp("100,100,900,900", @normal)
BoxDrawText(1, "0,210,1000,1000","Drawing Buttons", @FALSE, 1)
TimeDelay(2)
BoxButtonDraw(1, bDraw1, "Button 1", "100,450,300,550")
TimeDelay(2)
BoxButtonDraw(1, bDraw2, "Button 2", "400,450,600,550")
TimeDelay(2)
BoxButtonDraw(1, bDraw3, "Button 3", "700,450,900,550")
bWho=0
while bWho == 0
 for x =1 to 3
 if BoxButtonStat(1,x) then bWho=x
 next
endwhile
Message("Excuse Me", "Please, don’t push my buttons")
BoxDestroy(1)

See Also:
BoxesUp, BoxNew, BoxButtonKill, BoxButtonStat, BoxButtonWait

WinBatch Functions

45

BoxButtonKill
Removes a push-button from a WinBatch box.

Syntax:
BoxButtonKill(box ID, button ID)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(i) button ID the ID number of the desired push-button.

Returns:
(i) @TRUE on success; @FALSE on failure.

Example:
; sample code for BoxButtonKill
bDraw1=1
bDraw2=2
bDraw3=3
BoxesUp("100,100,900,900", @normal)
BoxDrawText(1,"0,210,1000,1000","Select a Button", @FALSE, 1)
BoxButtonDraw(1, bDraw1, "Button 1", "100,450,300,550")
BoxButtonDraw(1, bDraw2, "Button 2", "400,450,600,550")
BoxButtonDraw(1, bDraw3, "Button 3", "700,450,900,550")

bWho=0
while bWho == 0
for x =1 to 3
if BoxButtonStat(1,x) then bWho=x
next
endwhile

Switch bWho
;Message("Excuse Me", "Please, don’t push my buttons")
Case 1
BoxDrawText(1, "0,310,1000,1000", "Killing Button %bWho%", @TRUE,
1)BoxButtonKill(1, bDraw1)
TimeDelay(2)
Break
Case 2
BoxDrawText(1, "0,310,1000,1000", "Killing Button %bWho%", @TRUE, 1)
BoxButtonKill(1, bDraw2)
TimeDelay(2)
Break
Case 3
BoxDrawText(1, "0,310,1000,1000", "Killing Button %bWho%", @TRUE, 1)
BoxButtonKill(1, bDraw3)
TimeDelay(2)
Break
endswitch

WinBatch Functions

46

See Also:
BoxesUp, BoxNew, BoxButtonDraw, BoxButtonStat, BoxButtonWait

BoxButtonStat
Determines whether a push-button in a WinBatch box has been pressed.

Syntax:
BoxButtonStat(box ID, button ID)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(i) button ID the ID number of the desired push-button.

Returns:
(i) @TRUE if the button has been pressed; @FALSE if it hasn’t.

This function will also toggle the button back to "un-pressed".

Example:
; sample script for BoxButtonStat
bDraw1=1
bDraw2=2
BoxesUp("200,200,700,700", @normal)
BoxDrawText(1, "0,310,1000,1000","Pick a Button", @FALSE, 1)
BoxButtonDraw(1, bDraw1, "Button 1", "200,464,450,558")
BoxButtonDraw(1, bDraw2, "Button 2", "550,464,800,558")
bWho=0
while bWho == 0
for x =1 to 2
if BoxButtonStat(1,x) then bWho=x
next
endwhile
Switch bWho
case 1
Display(3,"Button Example", "You pushed Button 1")
break
case 2
Display(3,"Button Example", "You pushed Button 2")
Break
endswitch

See Also:
BoxesUp, BoxNew, BoxButtonDraw, BoxButtonKill, BoxButtonWait

BoxButtonWait
Waits for any button in any box to be pressed.

WinBatch Functions

47

Syntax:
BoxButtonWait()

Returns:
(i) always 1.

This function will stay in a loop while all buttons are false. If any of the buttons
are true when this command is issued, the command will not wait.

Example:
bDraw1=1
bDraw2=2
bWho=0
BoxesUp("200,200,700,700", @normal)
BoxDrawText(1, "0,310,1000,1000","Pick a Button", @FALSE, 1)
BoxButtonDraw(1, bDraw1, "Button 1", "200,464,450,558")
BoxButtonDraw(1, bDraw2, "Button 2", "550,464,800,558")
BoxButtonWait()
for x =1 to 2
 if BoxButtonStat(1,x) then bWho=x
next
Switch bWho
case 1
 Display(3,"Button Example", "You pushed Button 1")
 break
case 2
 Display(3,"Button Example", "You pushed Button 2")
 Break
endswitch

See Also:
BoxesUp, BoxNew, BoxButtonDraw, BoxButtonKill, BoxButtonStat

BoxCaption
Changes the title of a WinBatch box.

Syntax:
BoxCaption(box ID, caption)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(s) caption title for the box.

Returns:
(i) @TRUE on success; @FALSE on failure.

This function sets the title of the Window. The main window always has a title
(caption) bar. Windows created with the BoxNew function, using a "2" for the

WinBatch Functions

48

style parameter, also have a caption bar. If the box does not have a caption bar,
the function is effectively ignored.

Example:
;; sample script for BoxCaption
BoxesUp("200,200,700,700", @normal)
BoxDrawText(1,"0,310,1000,1000","Watch the Title Bar", @FALSE, 1)
BoxCaption(1, "WinBatch BoxCaption Example")
TimeDelay(5)
BoxCaption(1, "Change the title to whatever you like")
TimeDelay(3)
BoxCaption(1, "You have the power")
TimeDelay(3)

See Also:
BoxesUp, BoxNew

BoxColor
Sets the background color for use with a WinBatch object.

Syntax:
BoxColor(box ID, color, wash color)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(s) color the background color, a string in the form: "red, green, blue".
(i) wash color color used to create a background gradient effect.

Returns:
(i) @TRUE on success; @FALSE on failure.

Sets the background color for use with a WinBatch object, either a rectangle, a
circle, or a line.
If a gradient effect is not desired, specify "0" for "wash color". If "wash color" is
"0", or if a 16-color video driver is installed, then " normal color" will be used.
Default is white, no wash

Color
BLACK="0,0,0"
WHITE="255,255,255"
RED="255,0,0"
GREEN="0,255,0"

DKGRAY="192,192,192"
GRAY="128,128,128"
DKRED="128,0,0"
DKGREEN="0,128,0"

BLUE="0,0,255"
PURPLE="255,0,255"
YELLOW="255,255,0"
CYAN="0,255,255"

DKBLUE="0,0,128"
DKPURPLE="128,0,128"
DKYELLOW="128,128,0"
DKCYAN="0,128,128"

WinBatch Functions

49

Wash color
0 No Wash
1 Red
2 Green
3 Yellow
4 Blue
5 Magenta
6 Cyan
7 White

Example:
; sample code for various wash colors
BoxesUp("0,0,1000,1000", @zoomed)
for i=1 to 7
BoxColor(1,"255,0,0",i) ;sets the background color
BoxDrawRect(1,"0,0,1000,1000",2);object that will use the color
Message("Wash Code",i)
next

See Also:
BoxesUp, BoxNew, BoxPen, BoxTextColor

BoxDestroy
Removes a WinBatch box.

Syntax:
BoxDestroy(box ID)

Parameters:
(i) box ID the ID number of the desired WinBatch box.

Returns:
(i) @TRUE on success; @FALSE on failure.

Removes a WinBatch box and any buttons in the box from the screen. If you
specify a box ID of 1, all boxes vanish.

Example:
; sample script for BoxDestroy
BoxesUp("0,0,1000,1000", @normal)
BoxDrawText(1, "0,700,1000,1000", "BoxDestroy", @FALSE, 1)
BoxCaption(1, "WinBatch BoxDestroy Example Box 1")
BoxNew(2,"30,41,310,365", 1)
BoxDrawText(2, "0,500,1000,1000", "Box 2", @TRUE, 1)
BoxNew(3,"330,41,610,365", 1)
BoxDrawText(3, "0,500,1000,1000", "Box 3", @TRUE, 1)
BoxNew(4,"639,41,919,365", 2)
BoxDrawText(4, "0,500,1000,1000", "Box 4", @TRUE, 1)
for i=2 to 4

WinBatch Functions

50

Message("BoxDestroy", "Destroying Box Number %i%")
BoxDestroy(i)
next

See Also:
BoxesUp, BoxNew

BoxDrawCircle
Draws an ellipse in a WinBatch box.

Syntax:
BoxDrawCircle(box ID, coordinates, style)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(s) coordinates dimensions of circle, in virtual units

(upper-x upper-y lower-x lower-y).
(i) style style of circle to be drawn.

Returns:
(i) @TRUE on success; @FALSE on failure.

Draws an ellipse on the screen using the current BoxPen for the outline, and the
current BoxColor for the inside of the box.

Style:
0 empty circle with border
1 filled circle with border
2 filled circle with no border
3 transparent circle/rectangle with border.

Example:
; sample script for BoxDrawCircle
BoxesUp("0,0,1000,1000", @normal)
BoxColor(1,"255,255,0",0)
BoxDrawRect(1,"0,0,1000,1000",2)
BoxColor(1,"0,0,255",4)
BoxDrawText(1, "0,500,1000,1000", "WinBatch Box Example - BoxDrawCircle
",@FALSE, 1)
BoxCaption(1, "WinBatch BoxDrawCircle Example")
BoxDrawCircle(1, "30,41,310,365", 0)
BoxDrawText(1, "30,381,310,400", "Style 0 - empty with
border ",@FALSE,1)
BoxDrawCircle(1, "330,41,610,365", 1)
BoxDrawText(1, "330,381,610,400", "Style 1 - filled with border ",
@FALSE, 1)
BoxColor(1,"255,0,0",4)
BoxDrawCircle(1, "639,41,919,365", 2)

WinBatch Functions

51

BoxDrawText(1, "639,381,919,400", "Style 2 - filled with no border ",
@FALSE, 1)
BoxDrawCircle(1, "30,41,919,365", 3)
BoxDrawText(1, "330,11,610,100", "Style 3 - transparent circle with
border. ", @FALSE, 1)
TimeDelay(5)

See Also:
BoxesUp, BoxNew, BoxColor, BoxDrawLine, BoxDrawRect, BoxDrawText,
BoxPen

BoxDrawLine
Draws a line in a WinBatch box.

Syntax:
BoxDrawLine(box ID, coordinates)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(s) coordinates starting and ending points for a line, in virtual units (start-x,

start-y, end-x, end-y).

Returns:
(i) @TRUE on success; @FALSE on failure.

Draws a line from first point to the second using the current BoxPen.

Example:
; sample script for BoxDrawLine
BoxesUp("100,100,800,800", @normal)
BoxDrawText(1,"0,600,1000,1000","BoxDrawLine", @FALSE, 1)
BoxCaption(1, "WinBatch BoxDrawLine Example")
co1=200
co2=200
co3=500
co4=500
For i=1 to 5
TimeDelay(1)
BoxDrawLine(1,"%co1%,%co2%,%co3%,%co4%")
co1=co1+10
co2=co2+-20
co3=co3+-5
co4=co4+15
next
TimeDelay(2)

See Also:
BoxesUp, BoxNew, BoxDrawCircle, BoxDrawRect, BoxDrawText, BoxPen

WinBatch Functions

52

BoxDrawRect
Draws a rectangle in a WinBatch box.

Syntax:
BoxDrawRect(box ID, coordinates, style)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(s) coordinates dimensions of rectangle, in virtual units (upper-x upper-y

lower-x lower-y).
(i) style style of rectangle to be drawn.

Returns:
(i) @TRUE on success; @FALSE on failure.

Draws a rectangle on the screen using the current BoxPen for the outline, and the
current BoxColor for the inside of the box.

Style:
0 empty rectangle with border
1 filled rectangle with border
2 filled rectangle with no border
3 transparent circle/rectangle with border.

Example:
BoxesUp("0,0,1000,1000", @normal)
BoxColor(1,"255,255,0",0)
BoxDrawRect(1,"0,0,1000,1000",2)
BoxColor(1,"255,0,0",0)
BoxDrawText(1, "0,900,1000,1000", "WinBatch Box Example - BoxDrawRect
",@FALSE, 1)
BoxCaption(1, "WinBatch BoxDrawRect Example")
BoxDrawRect(1, "30,41,310,465", 0)
BoxDrawText(1, "30,500,310,665", "Style 0 - empty with border ", @FALSE,
1)
BoxDrawRect(1, "330,41,610,365", 1)
BoxDrawText(1, "330,381,610,365", "Style 1 - filled with border
",@FALSE,1)
BoxColor(1,"0,0,255",0)
BoxDrawRect(1, "696,114,839,841", 2)
BoxDrawText(1, "696,881,839,841", "Style 2 - filled with no border ",
@FALSE, 1)
BoxDrawRect(1, "30,41,839,841", 3)
BoxDrawText(1, "30,11,839,841", "Style 3 - transparent rectangle with
border.", @FALSE, 1)
TimeDelay(5)

See Also:
BoxesUp, BoxNew, BoxDrawCircle, BoxDrawLine, BoxDrawText, BoxPen

WinBatch Functions

53

BoxDrawText
Displays text in a WinBatch box.

Syntax:
BoxDrawText(box ID, coordinates, text, erase flag, alignment)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(s) coordinates dimensions of bounding rectangle for text, in virtual units

(upper-x upper-y lower-x lower-y).
(s) text text to be displayed.
(i) erase flag @TRUE if background should be cleared; @FALSE if it

should not be cleared.
(i) alignment alignment mode for text.

Returns:
(i) @TRUE on success; @FALSE on failure.

Draws text on the screen using the current BoxTextColor and BoxTextFont. Text
may extend beyond the box boundaries if the allotted space is exceeded or size of
the text is too large.
Note: In order to update text, make sure the proper coordinates are specified for
the given text.
Alignment is a bitmask, consisting of one or more of the following optional flags
(OR’ed together):

0 left justified
1 centered horizontally
2 right-justified
4 centered vertically
8 bottom-justified (single line only)
16 wrap long lines
32 adjust font so that text fills width of bounding rectangle (single line only)
64 right-justify text by adding space between words
128 clip (truncate) text if it doesn’t fit within specified rectangle

Example:
; sample code for BoxDrawText
BoxesUp("200,200,800,800", @normal)
BoxDrawText(1, "200,200,750,250", "WinBatch Box Example - BoxDrawText
",@TRUE, 0)
BoxCaption(1, "WinBatch BoxDrawText Example")
BoxDrawText(1, "100,350,900,400", "Use BoxDrawText to display information
to your user. ", @TRUE, 0)
TimeDelay(5)

WinBatch Functions

54

See Also:
BoxesUp, BoxNew, BoxDrawCircle, BoxDrawLine, BoxDrawRect,
BoxTextColor, BoxTextFont

BoxesUp
Displays WinBatch boxes.

Syntax:
BoxesUp(coordinates, show mode)

Parameters:
(s) coordinates window coordinates for placement of top-level WinBatch box,

in virtual units (upper-x upper-y lower-x lower-y).
(i) show mode @NORMAL, @ICON, @ZOOMED, or @HIDDEN.

Returns:
(i) @TRUE on success; @FALSE on failure.

Places a WinBatch box on the screen for which drawing tools can be defined.
"Coordinates" specify the placement on the screen when the window is not
zoomed (maximized). The "box ID" of this main box (window) is 1. Up to 7
more boxes (windows) may be defined with the BoxNew function.
Note: Drawing tool definitions and drawing commands refer to a particular "box
ID". Different drawing tools can be defined for separate boxes.

Example:
; sample script for BoxesUp
Message("Example","BoxesUp can display a box in Normal Mode. ")
BoxesUp("200,200,800,800", @normal)
BoxDrawText(1,"500,200,500,200","BoxesUp %@crlf% Normal Mode", @FALSE, 1)
BoxCaption(1, "Normal Mode")

Message("Example","BoxesUp can display the box as an Icon.")
BoxDestroy(1)
BoxesUp("200,200,800,800", @icon)
BoxDrawText(1,"500,200,500,200","BoxesUp %@crlf% Icon Mode", @FALSE, 1)
BoxCaption(1, "Example - Icon Mode")

Message("Example", "BoxesUp can display in a Zoomed mode.")
BoxDestroy(1)
BoxesUp("200,200,800,800", @zoomed)
BoxDrawText(1,"500,200,500,200","BoxesUp %@crlf% Zoomed Mode", @FALSE, 1)
BoxCaption(1, "Zoomed Mode")
Message("Example","Finally, WinBatch can set hidden mode to the box.")

See Also:
BoxNew

WinBatch Functions

55

BoxMapMode
Sets the mapping mode for a WinBatch box.

Syntax:
BoxMapMode(box ID, map mode)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(i) map mode @ON to map coordinates to client scale (default). One Unit is

1/1000 (or 0.1%) of the size of the current box.
 @OFF for screen scale. One unit is 1/1000 (or 0.1%) of the

size of the screen.

Returns:
(i) @TRUE on success; @FALSE on failure.

BoxMapMode defines how a function's "coordinate" parameters will be
interpreted. The default setting, @ON, allows WinBatch boxes to automatically
resize themselves per the user’s monitor adjustments. In the default "mapping"
mode each window is assumed to be 1000x1000. This makes it easy to write a
WinBatch program that will run on anybody’s screen.
Note: The Default setting is highly recommended.

Example:
;; sample script for BoxMapMode
IntControl(12,5,0,0,0)
title="BoxMapMode Example"
BoxesUp("100,100,900,900",@ZOOMED)

BoxMapMode(1,1) ; Default map mode
BoxColor(1,"255,255,0",0)
BoxPen(1,"0,0,255",10)
BoxTextFont(1, "", 30, 0, 0)
BoxTextColor(1,"0,0,0")

BoxDrawRect(1,"50,50,150,150",1)
BoxDrawCircle(1,"200,50,350,150",1)
BoxDrawLine(1,"400,100,500,100")
BoxDrawLine(1,"450,50,450,150")
BoxDrawText(1, "50,160,500,190", "Map Mode = 1 Using sizes based on
window", 0, 0)
BoxMapMode(1,0)
BoxColor(1,"255,255,0",0)
BoxPen(1,"0,0,255",10)
BoxTextFont(1, "", 30, 0, 0)

BoxDrawRect(1,"50,200,150,300",1)
BoxDrawCircle(1,"200,200,350,300",1)
BoxDrawLine(1,"400,250,500,250")

WinBatch Functions

56

BoxDrawLine(1,"450,200,450,300")
BoxDrawText(1, "50,310,500,340", "Map Mode = 0 Using sizes based on
screen", 0, 0)
Message(title,"Note that both sets of objects look pretty much the
same.")
WinPlace(0,0,750,750,"")
Message(title,"Note that when we changed the size of the window the
MapMode=1 object were resized proportionally, while as the MapMode=0
objects stayed the same.")
WinPlace(0,0,500,500,"")
Message(title,"MapMode=1 objects resized again.")
WinPlace(0,0,200,1000,"")
Message(title,"Note that while most objects scale reasonably well,
fonts are based on Window height.")
WinPlace(0,0,1000,200,"")
Message(title,"Giving us teeny tiny fonts in this sort of Window.")
WinPlace(50,50,950,950,"")
BoxMapMode(1,1) ; Default map mode
BoxTextFont(1, "", 30, 0, 0)
BoxTextColor(1,"255,0,0")
BoxDrawText(1,"50,500,500,700","Resize the window with the mouse and
watch what happens. Hit ESC when you are done. (This message drawn with
MapMode=1)",0,16)
WaitForKey("{ESC}","","","","")

See Also:
BoxesUp, BoxNew

BoxNew
Creates a WinBatch box.

Syntax:
BoxNew(box ID, coordinates, style)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(s) coordinates dimensions of box, in virtual units (upper-x upper-y lower-x

lower-y).
(i) style style of box to create.

Returns:
(i) @TRUE on success; @FALSE on failure.

This function makes a new box inside the top level (box ID 1) box. If an existing
box ID is used, the newly specified coordinates and style will be adopted.
Style allows a selection from three different kinds of boxes.

0 No border
1 Border
2 Border and caption

WinBatch Functions

57

Example:
; sample script for BoxNew
BoxesUp("0,0,1000,1000", @normal)
BoxDrawText(1, "500,500,500,500", "BoxNew ", @FALSE, 1)
BoxCaption(1, "WinBatch BoxNew Example")
BoxColor(1,"255,255,0",0)
BoxDrawRect(1, "0,0,1000,1000", 2)

BoxNew(2, "30,41,310,465", 0)
BoxDrawText(1, "30,681,310,665","Style 0-No border ",@FALSE,1)

BoxNew(3, "330,41,610,365", 1)
BoxDrawText(1, "330,381,610,365","Style 1-Border ",@FALSE,1)

BoxNew(4, "696,114,839,841", 2)
BoxDrawText(1, "696,881,839,841","Style 2-Border with caption ",@FALSE,1)
BoxCaption(4, "Style 2 BoxNew")
TimeDelay(7)

See Also:
BoxesUp

BoxPen
Sets the pen for a WinBatch box.

Syntax:
BoxPen(box ID, color, width)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(s) color color of pen to use.
(i) width width of pen to use, in virtual units.

Returns:
(i) @TRUE on success; @FALSE on failure.

Defines the color and width of a "pen". Pens are used to draw lines and borders of
rectangles and ellipses. The default is black, 1 pixel wide.
Width is defined according to the current mapping mode, (see BoxMapMode). In
the default mapping mode, a width of 10 is 1% of whichever is smaller, the width
or the height of the box.
"Color" is a string in the form: "red, green, blue".

BLACK="0,0,0"
WHITE="255,255,255"
RED="255,0,0"

DKGRAY="192,192,192"
GRAY="128,128,128"
DKRED="128,0,0"

WinBatch Functions

58

GREEN="0,255,0" DKGREEN="0,128,0"
BLUE="0,0,255"
PURPLE="255,0,255"
YELLOW="255,255,0"
CYAN="0,255,255"

DKBLUE="0,0,128"
DKPURPLE="128,0,128"
DKYELLOW="128,128,0"
DKCYAN=’0,128,128"

Example:
; sample script for BoxPen
BoxesUp("100,100,900,900", @normal)
BoxColor(1,"255,255,0",0)
BoxDrawRect(1, "0,0,1000,1000", 2)
BoxDrawText(1, "0,200,1000,1000", "BoxPen ", @FALSE, 1)
BoxCaption(1, "WinBatch BoxPen Example")
BoxColor(1,"0,0,255", 0)
BoxPen(1,"255,0,0",25)
BoxDrawRect(1,"350,350,650,650", 1)
BoxDrawLine(1, "350,700,800,700")
TimeDelay(5)

See Also:
BoxesUp, BoxNew , BoxColor, BoxTextColor

BoxTextColor
Sets the text color for a WinBatch box.

Syntax:
BoxTextColor(box ID, color)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(s) color text color.

Returns:
(i) @TRUE on success; @FALSE on failure.

BoxTextColor defines the color of text for a particular box. The default is black.
"Color" is a string in the form: "red, green, blue".

BLACK="0,0,0"
WHITE="255,255,255"
RED="255,0,0"
GREEN="0,255,0"

DKGRAY="192,192,192"
GRAY="128,128,128"
DKRED="128,0,0"
DKGREEN="0,128,0"

BLUE="0,0,255"
PURPLE="255,0,255"
YELLOW="255,255,0"

DKBLUE="0,0,128"
DKPURPLE="128,0,128"
DKYELLOW="128,128,0"

WinBatch Functions

59

CYAN="0,255,255" DKCYAN="0,128,128"

Example:
; sample script for BoxTextColor
BoxesUp("200,200,800,800", @normal)
BoxCaption(1, "WinBatch BoxTextColor Example")
x1="0,0,0" ;BLACK
x2="0,0,128" ;DKBLUE
x3="255,0,0" ;RED
x4="0,255,0" ;GREEN
x5="255,0,255" ;PURPLE
x6="255,255,0" ;YELLOW
x7="0,255,255" ;CYAN
for i=1 to 7
 BoxTextColor(1,x%i%)
 BoxDrawText(1, "0,350,1000,1000", "BoxTextColor", @True, 1)
 TimeDelay(2)
next

See Also:
BoxesUp, BoxNew, BoxTextFont, BoxColor, BoxPen

BoxTextFont
Sets the font for a WinBatch box.

Syntax:
BoxTextFont(box ID, font-name, size, style, pitch & family & character-set)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(s) font-name name of font typeface.
(i) size size of font, in virtual units.
(i) style style flags for font.
(i) pitch/family/char-set font pitch and family.

Returns:
(i) @TRUE on success; @FALSE on failure.

When defining the font using BoxTextFont, size is based on mapping mode. In
the default, a height of 100 is 10% of the height of the box.

Style: (the following numbers may be added together)
0 Default
1-99 Weight (40 = Normal, 70 = Bold)
100 Italics
1000 Underlined

A style of 1170 gives you a bold, underlined, italic font.

WinBatch Functions

60

Pitch & Family & Character-set parameters do not override the typeface supplied
in the font-name parameter. If a match cannot be made, (font name misspelled,
font not on system) they supply a general description for selecting a default font.
To combine one pitch flag with one family flag, use the binary OR ("|") operator.

Pitch:
0 Default
1 Fixed pitch
2 Variable pitch

Family:
0 Default
16 Roman (Times Roman, Century Schoolbook, etc.)
32 Swiss (Helvetica, Swiss, etc.)
48 Modern (Pica, Elite, Courier, etc.)
64 Script
80 Decorative (Old English, etc.)

Example:
BoxesUp("100,100,900,900", @normal)
BoxCaption(1, "WinBatch BoxTextFont Example")
x1="0,0,0" ;BLACK
x2="0,0,128" ;DKBLUE
x3="255,0,0" ;RED
x4="255,0,255" ;PURPLE
x5="0,0,255" ;BLUE
f1="Times Roman"
f2="Helvetica"
f3="Courier New"
f4="Brush Script MT"
f5="Book Antiqua"
fam=16
size=20
for i=1 to 5
 BoxTextColor(1,x%i%)
 BoxTextFont(1, f%i%, size, 0, fam)
 BoxDrawText(1,"1%size%,2%size%,1000,1000","BoxTextFont", @False, 0)
 Fam=fam+16
 size=size+16
 TimeDelay(2)
next

See Also:
BoxesUp, BoxNew, BoxTextColor

BoxUpdates
Sets the update mode for, and/or updates, a WinBatch box.

WinBatch Functions

61

Syntax:
BoxUpdates(box ID, update flag)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(i) update flag see below.

Returns:
(i) @TRUE on success; @FALSE on failure.

BoxUpdates controls how particular boxes are updated. Screen updates can be
suppressed so that images seem to suddenly appear on the screen, rather than
slowly form as they are drawn. This function is rarely required.

Update flag:
0 Suppress screen updates
1 Enable updates (this is the default setting)
2 Catch up on updates
3 Redraw the entire box

Example:
; Define Main Box
BoxesUp("100,100,900,900",@ZOOMED)
BoxColor(1,"255,255,0",0)
BoxDrawRect(1,"0,0,1000,1000",2)
BoxCaption(1,title)
BoxColor(1,"0,0,255",0)

; Define Shape Colors
color1 = "255,0,0" ; RED
color2 = "0,0,255" ; BLUE

info = 'Default update handling'
BoxUpdates(1,1) ;Default Updates
For x = 1 to 6
 Pause('See whats happening...',info)
 BoxDrawRect(1,"100,100,200,200",1)
 BoxDrawCircle(1,"300,100,500,200",1)
 BoxDrawRect(1,"100,300,200,400",1)
 BoxDrawCircle(1,"300,300,500,400",1)
 BoxDrawRect(1,"100,500,200,600",1)
 BoxDrawCircle(1,"300,500,500,600",1)
 BoxDrawRect(1,"100,700,200,800",1)
 BoxDrawCircle(1,"300,700,500,800",1)
 If x Mod 2 then BoxColor(1,color1,0)
 else BoxColor(1,color2,0)
Next

info = 'Suppressed update handling'
BoxUpdates(1,0) ;Suppress Updates

WinBatch Functions

62

For y = 1 to 5
 Pause('See whats happening...',info)
 BoxDrawRect(1,"100,100,200,200",1)
 BoxDrawCircle(1,"300,100,500,200",1)
 BoxDrawRect(1,"100,300,200,400",1)
 BoxDrawCircle(1,"300,300,500,400",1)
 BoxDrawRect(1,"100,500,200,600",1)
 BoxDrawCircle(1,"300,500,500,600",1)
 BoxDrawRect(1,"100,700,200,800",1)
 BoxDrawCircle(1,"300,700,500,800",1)
 If y Mod 2 then BoxColor(1,color1,0)
 else BoxColor(1,color2,0)
Next

BoxUpdates(1,1) ;Enable Updates
BoxUpdates(1,2) ;Catch up on Updates

Message(title,"That's all folks")
exit

See Also:
BoxesUp, BoxNew

Drawing Stack Management
In general, WinBatch lets you draw objects in various boxes using simple linear
programming as with true message-based Windows programming. However, there
is a fundamental discrepancy between the message-based Windows programming
methods, and the traditional linear method used by WinBatch.
In a normal Windows application, the application must be ready to redraw all or
any portion of its window at any time. This adds considerable complexity to a true
Windows program. In WinBatch, the programmer is shielded from the gory
details of the dynamic redrawing required by Windows, while WinBatch maintains
a simple, traditional linear programming style.
In order to do this, WinBatch maintains a small database of the Box commands
requested by the programmer, and refers to this database when Windows requests
a redraw. In general, and for simpler applications, the existence of this database is
completely transparent to the programmer. There are cases, however, in which the
database must be managed by the programmer to avoid reaching the maximum
limits of the database. If the maximum limits are reached, the program will die
with a Box Stack exceeded error.
If there are some objects that constantly change, such that the limit of about 150
Box commands in the stack will be exceeded, then you must manage the Box
Data. The idea is to draw all the fixed, non-changing objects first, and then place a
"TAG" into the Data stack. Then draw the first version of the constantly changing
object(s). When it comes time to update those objects, a BoxDataClear will erase
all items below the "TAG", and all remaining data space will again be available for
reuse.

WinBatch Functions

63

The thermometer bar and the text for the note in the setup program use this feature.
All of the examples that do continuous screen draws also use these functions.

BoxDataClear
Removes commands from a WinBatch box command stack.

Syntax:
BoxDataClear(box ID, tag)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(s) tag tag to be removed.

Returns:
(i) @TRUE on success; @FALSE on failure.

This function removes all commands above "tag" from the command stack. "Tag"
is not removed.
All buttons and Box commands after the tag are forever erased.

Example:
; sample script for BoxDataTag
BoxesUp("0,0,1000,1000",@zoomed)
;Changes the title of a WinBatch box.
BoxCaption(1,"Random Rectangles")
;Creates a push-button in a WinBatch box
BoxButtonDraw(1,1,"E&xit","750,860,900,930")
;Creates a tag entry in a WinBatch box command stack
BoxDataTag(1,"ACORN")
while 1
 ;Removes commands from a WinBatch box command stack
 ;if BoxDataClear was commented out it would exceed
 ;the limit of commands in the stack and error
 BoxDataClear(1,"ACORN")
 if BoxButtonStat(1,1)==1 then break
 x=Random(1000)
 y=Random(1000)
 s=Random(1000)
 t=Random(1000)
 r=Random(255)
 g=Random(255)
 b=Random(255)
 color=strcat(r, ",", g, ",", b)
 location=strcat(x, ",", y, ",", s, ",", t)
 BoxColor(1,color,0)
 BoxDrawRect(1,location,2)
endwhile
exit

WinBatch Functions

64

See Also:
BoxesUp, BoxNew BoxDataTag

BoxDataTag
Creates a tag entry in a WinBatch box command stack.

Syntax:
BoxDataTag(box ID, tag)

Parameters:
(i) box ID the ID number of the desired WinBatch box.
(s) tag tag to be created.

Returns:
(i) @TRUE on success; @FALSE on failure.

Places a tag into the data stack for the specified box. Usually one tag per box is all
that is needed. Multiple tags are allowed, but not advised. The tag "TOP" is
automatically placed at the top of the data stack .

Example:
; sample script for BoxDataTag
BoxesUp("0,0,1000,1000",@zoomed)
;Changes the title of a WinBatch box.
BoxCaption(1,"Random Rectangles")
;Creates a push-button in a WinBatch box
BoxButtonDraw(1,1,"E&xit","750,860,900,930")
;Creates a tag entry in a WinBatch box command stack
BoxDataTag(1,"ACORN")
while 1
 ;Removes commands from a WinBatch box command stack
 ;if BoxDataClear was commented out it would exceed
 ;the limit of commands in the stack and error
 BoxDataClear(1,"ACORN")
 if BoxButtonStat(1,1)==1 then break
 x=Random(1000)
 y=Random(1000)
 s=Random(1000)
 t=Random(1000)
 r=Random(255)
 g=Random(255)
 b=Random(255)
 color=strcat(r, ",", g, ",", b)
 location=strcat(x, ",", y, ",", s, ",", t)
 BoxColor(1,color,0)
 BoxDrawRect(1,location,2)
endwhile
exit

WinBatch Functions

65

See Also:
BoxesUp, BoxNew, BoxDataClear

WinBatch Specific Functions

Breakpoint
Causes a breakpoint on the next statement when used with a script debugger, like
WinBatch Studio. Otherwise the command does nothing.

Syntax:
Breakpoint

Parameters:
(none)

Returns:
(not applicable)

Use this command with WinBatch Studio to cause execution to stop in the
debugger. If this command is encountered outside of the WinBatch Studio
debugger it is ignored.
Debuggers usually have a method of setting a breakpoint on particular lines of a
script or even stepping through the lines one at a time. Sometimes problems occur
after extensive script execution where it would be tedious to step through. For
example if you wish to investigate what happens on the 782’nd pass of a FOR loop
you could do something similar to the example code below:

Example:
a=1
 b=1000
 For xx = 1 to b
 If xx == 782 then BreakPoint
 c=a+xx+1
 next
 Message("Loop","Complete")

See Also:
Debug, DebugTrace…(see Windows Interface Language)

ExtractAttachedFile
Extracts an embedded file from a compiled large EXE. {compiled version only}

Syntax:
ExtractAttachedFile (source-name, target)

WinBatch Functions

66

Parameters:
(s) source-name specifies the name of the embedded file. This must not

contain any path information. The embedded file may be a
WIL DLL, an extender DLL, or an "other file".

(s/i) target/request specifies the name of the output file that will be written
(This may contain path information.) or the request number
(see below).

Returns:
(i/s) returns 1 or a tab-delimited list of embedded file names,

which do not contain any path information.
To list embedded files: "source-name" must be a blank string ("").
"target /request" specifies the type of embedded files to list:
Request Meaning
0 WIL DLL
1 Extender DLL's
2 "Other files"
Note: Added an option to the compiler to skip auto-extraction of extenders and
"other files" from large EXE's. The WIL DLL is always extracted from a large
EXE, if necessary.
Make sure you choose the skip auto-extraction option in the compiler if you want
to control file extraction with ExtractAttachedFile.

Example:
wildll = ExtractAttachedFile("",0)
Message("WIL DLL", wildll)

Compiler Service Functions

SvcSetAccept(codes)
Specifies the control codes that the service will accept.

Syntax:
SvcSetAccept(codes)

Parameters:
(i) codes see below.

Returns:
(i) previous value the previous value for "codes", or -1 if not running as a

service.

WinBatch Functions

67

Codes can be 0 to specify no code to process, or it can be one or more of the
following control codes, combined using the bitwise OR ('|') operator:

Value Controls accepted Meaning
1 SERVICE_ACCEPT_STOP Service can be stopped
2 SERVICE_ACCEPT_PAUSE_CONTINUE Service can be paused and

continued
4 SERVICE_ACCEPT_SHUTDOWN Service is notified when system

shutdown occurs
32 SERVICE_ACCEPT_HARDWAREPROFI

LECHANGE
Computer's hardware profile has
changed.

64 SERVICE_ACCEPT_POWEREVENT Computer's power status has
changed.

128 SERVICE_ACCEPT_SESSIONCHANGE Computer's session status has
changed (requires XP/2003 or
newer.)

256 SERVICE_ACCEPT_PRESHUTDOWN Computer is about to shutdown
(requires Vista/2008 or newer.)

32768 SERVICE_ACCEPT_LOGOFF The service is notified when the
user logs off

By default, a WinBatch service will accept and automatically process
SERVICE_CONTROL_STOP commands. If you use the SvcSetAccept function,
you will be responsible for processing any of the control codes that are received,
including SERVICE_CONTROL_STOP (i.e., it will no longer be processed
automatically).

See also:
SvcSetState, SvcWaitForCmd

SvcSetState(state)
Updates the service control manager's status information for the service.

Syntax:
SvcSetState(state)

Parameters:
(i) state can be one of the following service states:

Value Service state Meaning
1 SERVICE_STOPPED The service is not running
2 SERVICE_START_PENDING The service is starting.
3 SERVICE_STOP_PENDING The service is stopping
4 SERVICE_RUNNING The service is running
5 SERVICE_CONTINUE_PENDING The service continue is pending

WinBatch Functions

68

6 SERVICE_PAUSE_PENDING The service pause is pending
7 SERVICE_PAUSED The service is paused

Returns:
(i) previous value the previous value for "state", or -1 if not running as a

service.

See also:
SvcSetAccept, SvcWaitForCmd

SvcWaitForCmd(timeout)
Waits or checks for receipt of a service control code.

Syntax:
SvcWaitForCmd(timeout)

Parameters:
(i) timeout timeout flag (in milliseconds)

Returns:
(i) control codes see below.

Value Control code Meaning

-1 Script not running as a service

 0 Timeout occurred or no codes
to process

 1 SERVICE_CONTROL_STOP Requests the service to stop

 2 SERVICE_CONTROL_PAUSE Requests the service to pause

 3 SERVICE_CONTROL_CONTINUE Requests the paused service to
resume

 5 SERVICE_CONTROL_SHUTDOWN Requests the service to perform
cleanup tasks, because the
system is shutting down

12 SERVICE_CONTROL_HARDWAREPROFILE
CHANGE

Computer's hardware profile
has changed

13 SERVICE_CONTROL_POWEREVENT Power status has changed

14 SERVICE_CONTROL_SESSIONCHANGE Session status has changed
(requires XP/2003 or newer)

15 SERVICE_CONTROL_PRESHUTDOWN System will be shutting down
(requires Vista/2008 or newer)

WinBatch Functions

69

128-
255

 User-Defined control code

32768 SERVICE_ACCEPT_LOGOFF The service is notified when the
user logs off

If any control codes have been received but not yet processed (using this function),
this function immediately returns the value of that control code. WinBatch maintains
a list of up to 16 unprocessed control codes that have been received, and this
function returns the first (oldest) one in the list, then clears that code from the list, so
the next time this function is called it will return the next control code in the list, if
any.

If there are no unprocessed control codes in the list, the behavior depends on the
value specified by "timeout". If "timeout" is -1, the function will wait until a control
code is received, and then return its value. If "timeout" is zero, the function will
immediately return a value of 0. If "timeout" is neither zero nor -1, then the function
will wait until the timeout expires or a control code is received, whichever comes
first.

See also:
SvcSetAccept, SvcSetState

Language Extenders

71

Language
Extenders

Network and other extenders are documented fully in the help files. For more
extensive information locate the appropriate help file. For a brief overview,
see below.

WIL extender Dlls are special Dlls designed to extend the built-in function set of
the WIL processor. These Dlls typically add functions not provided in the basic
WIL set, such as network commands for particular networks (ADSI, Windows,
and others), MAPI, ODBC, and other important Application Program Interface
(API) functions, as may be defined by the various players in the computer industry
from time to time. These Dlls may also include custom built function libraries
either by the original authors, or by independent third party developers. An
Extender SDK is available for you to write your own extender Dll's, if you are
familiar with C or C++ programming. Custom extender Dlls may add nearly any
sort of function to the WIL language. These range from the mundane network
math or database extensions, to items that can control fancy peripherals, including
laboratory or manufacturing equipment.

Install Extenders
Most WIL extenders must be installed separately; many are not installed by
default. To obtain any additional extender Dlls, download them from our website.

Website Install – If you have a current software maintenance plan, visit
http://www.winbatch.com/download.html. Locate, download and save the
appropriate extender ZIP file. Unzip to an empty temporary directory. Run the
SETUP.WBT file.

VCheck Install - The website also has a tool called VCheck which can be
downloaded. This WBT file is designed to make it easier to keep track of the many
WinBatch Extenders that are available, as well as any updates to those extenders.
Requirements: WinInet & Zipper extender must already be installed.

Using Extenders
The AddExtender function must be executed before attempting to use any
functions in the extender library. The AddExtender function should be only
executed once per extender in each WIL script that requires it.

Language Extenders

72

At the top of each script in which you use a WIL extender add the appropriate
extender with the AddExtender () command.
AddExtender("extender.dll")

Remember you can add up to 10 extender Dlls or a combined total of 500
functions.

The following is an abbreviated summary of the extenders. Refer to the extenders
in the on-line help file for function names and more details.

Windows Networking Extenders
These extenders provide standard networking support and may be used in
conjunction with other extenders.

Win32 Network Extender:
For use on all Windows NT family workstations. It can control Windows NT or
newer servers.

AddExtender("wwwnt34i.dll",0,"wwwnt64i.dll")

This extender is installed by default. For more information and a list of functions
see the Win32 Network Extender Help file.

ADSI Extender:
For use on all Windows platforms with the DS Client from Microsoft installed.

AddExtender("wwads44i.dll",0,"wwads64i.dll ")

For more information and a list of functions see the ADSI Extender Help file.

NetwareX Extender:
For use on all Windows platforms with the Novel Netware Client installed.

AddExtender("wwnwx34i.dll")

For more information and a list of functions see the NetwareX Extender Help file.
(Note: no longer supported)

Other Extenders
Here is a list of various other current extenders available.

Language Extenders

73

Control Manager Extender - Perfect control over all Windows dialog boxes. See
inside list boxes, interrogate check boxes, set radio buttons and handle tabbed
dialogs.
CpuInfo Extender - CPU speed, benchmark and other CPU information.
EHLLAPI Terminal Emulator Extender - Terminal Emulator support. This
extender allows working with terminal emulation programs. Allows screen-
scraping, data transfers, and much more.
File Search and File & Folder Finder Extender - High speed file and text search
engine.
Huge Math Extender - Performs arithmetic on huge (up to 2000 digit) numbers.
IP Address Grabber Extender - Get the machine's IP Addresses
MAPI Extender - Perform MAPI Operations.
Netware Extender – A new generation of Netware extenders for Novell Netware.
ODBC Extender – A basic set of Open Database Connectivity (ODBC)
commands.
Pixie Image Extender - Manipulate various image files, such as JPG, BMP, etc.
Rotate, Crop, Resize, Blur, Convert Formats, and more. (Note: no longer
supported)
Postie Extender - The Ultimate Internet Email extender. Sends and receives
POP3, IMAP4, and NNTP (newsgroup) email. Able to send and receive mime or
UUE encoded attachments. Supports SMTP, ESMTP, POP3, SSL/TSL and
IMAP4.
Printer Control Extender - Assists in working with printer drivers. Sets default
printer. Changes printer properties, Installs and removes printers, etc.
Process Information Extender - Retrieve information about processes and
modules.
RAS Extender - Create, manage, modify, rename and copy the Dialup RAS
entries used in dial-up networking.
Registry Search Extender - Registry Searcher. This extender, in combination
with a few build-in WIL Registry functions, can perform a search and replace of
most registry items.
Serial Port Extender - Talk to serial ports. Communicate with modems, X-10
household controllers, lab equipment, pretty much any serial device. Supports
USB COM ports and custom baud rates.
Shell Operations Extender - Performs Explorer-style file operations with
animated graphics. Can also copy, delete, and move entire directory structures.
Terminal Server Extender - Enumerate, interrogate and manipulate terminal
services sessions on a Windows NT or newer systems that has terminal services
enabled.
WILX Utility Extender - Various utility functions.

Language Extenders

74

WinInet Extender - Internet Extender. Supports HTTP and FTP. Grab web pages,
post form data to web servers, automate FTP sessions, and more.
WinSock Extender - Our older Internet extender.
Zipper Extender - ZIP and UNZIP files.

Utilities

75

Utilities
Dialog Editor

Visual
programming of
dialog boxes is
quick and
accurate. Use
generic variable
names so you can
reuse your
favorite dialogs.

The WIL Dialog Editor (see Filenames: Appendix A, page
119 for filename) provides a convenient method of creating
dialog box templates for use with the Dialog function.
It displays a graphical representation of a dialog box, and
allows you to create, modify, and move individual controls
which appear in the dialog box.
After you have defined your dialog box, the Dialog Editor
will generate the appropriate WIL code, which you can save
to a file or copy to the Clipboard for pasting into your WIL
program.

Note: The WIL Dialog Editor comes with an on-line help section in the
WinBatch help file, as well as detailed instructions in the next section.
Also see the Windows Interface Language Reference Manual for more details
on how to use the Dialog function to further customize your dialogs, including
adding callback procedures within User-Defined functions / subroutines to make
your dialogs 'dynamic'.

You can have as
many as 300
controls in a
WinBatch dialog.
However, too
many controls can
be confusing. Aim
for simple dialogs
with a consistent
appearance
between different
ones.

The WIL Dialog Editor offers quick production of
custom dialog boxes for your WinBatch programs.
The WIL Dialog Editor allows you to create dialog box
templates for WIL into a file with the .WBT file
extension. The Dialog Editor will write the WIL script
statements necessary to create and display the dialog.
You can visually design your dialog box on the screen
and then save the template script either as a .WBT file
or to the Windows Clipboard.

You can include the dialog template code directly in your batch code, or you can
use the batch language "Call" command to execute the dialog template. For
example:
Call("SampleDialog.WBT", "")

Utilities

76

Getting Started
Using the Dialog Editor is easy. Once it is loaded, these hints offer a quick way to
become comfortable with dialog box construction.
The dialog editor
filename is: WIL
Dialog
Editor.exe.

Launch the dialog editor executable, (see Filenames:
Appendix A on page 119 for filename).

Run the Dialog Editor
Via the Windows Explorer: Locate and double click on the file 'WIL Dialog
Editor.exe', in your WinBatch\System subdirectory.
or
Via WinBatch Studio: Click on the following tool bar icon

The editor will look like the following:

The dialog that gets generated by the WIL Dialog Editor will be the same size, as
the dialog that you create in the editor's window.

Utilities

77

To control the size of your dialog box, select the entire dialog, by clicking on the
title bar. The dialog should now be highlighted. Next, move your mouse cursor to
the highlighting at the edge of the dialog. When the mouse cursor changes to an
arrow, you can drag and drop the sides of the dialog, to the necessary size.

Menu Commands
Familiarize yourself with the six standard menus in this program; FILE, EDIT,
VIEW, INSERT, ALIGN, TEST and HELP.

File
New Creates a new dialog template. The new template is created

with two default buttons labeled "OK" and "Cancel".
Open… Displays the standard open file dialog. Use this dialog to

open an existing dialog template.
Save Use this dialog to save the currently open template to a file.

Dialog Editor will display the save file dialog box, if you
haven’t specified a file name yet.

Save As… Saves the currently open template to a file. This command
differs from the Save menu in that you are always prompted
for a file name and location with the system Save dialog
box.

Revert Reloads the dialog template from disk. Use this item with
care because, you will lose all changes since the last time
the template was saved to disk.

Open from
Clipboard

Loads a dialog template from the clipboard.

Save to
Clipboard

Copies the dialog template to the clipboard.

[Recent Files] List of most recently opened templates files. Click on the
file name to open the file.

Exit Terminates the Dialog Editor.

Edit
Undo Reverses the last edit. This command will not undo changes

made to control attribute values with the attribute dialog
box.

Cut Removes the active control from a dialog and places it in the
paste buffer. If a control already exists in the paste buffer, it
is destroyed before the copied control is added.

Copy Places a copy of the active control into the paste buffer. If a
control already exists in the paste buffer, it is destroyed

Utilities

78

before the copied control is added.
Paste Inserts a control in the paste buffer into the dialog.
Select All Selects all controls in dialog.
Delete Removes the active control from a dialog.
Rescale Expands or shrinks the dialog and all controls so that the

dialog just fits in the Dialog Editor’s current viewing area.
Note: Because of limits on the granularity of controls and
fonts, the adjustments are only approximate and you may
need to make additional edits.

Convert Converts a legacy (i.e. 6.1 format) dialog template to the
latest dialog template format.

Options… Launches the options dialog. The options dialog allows you
to control how Dialog Editor loads and saves your dialog
template.

 Load Tab…
The Load Tab options let you control what Dialog Editor
does at startup and while reading your dialog templates.
Load Bitmap Files: When this box is checked, Dialog
Editor will search for and display the bitmaps you have
specified for the dialog background, bitmap buttons and
picture controls. When this box is not checked, Dialog
Editor will not attempt to find or display bitmaps. If you
change this option after you have already loaded a bitmap
file into your dialog, Dialog Editor will not unload the
bitmap. It will not, however, attempt to find and display any
additional bitmap you may specify.
Load Last Template at Startup: Check this box to have
Dialog Editor load your previous work the next time you
start it. If this box is not checked, Dialog Editor will start
with the default new dialog template.
Display Warnings When Loading Template: Use this check
box to turn off warning messages while loading dialog
templates. Dialog Editor displays warnings when it cannot
find bitmap files or finds a malformed or missing attribute
value in a controls definition. When this option is checked,
Dialog Editor gives you the opportunity to continue or abort
the loading process when problems are found. It may or
may not be able to load the problematic control when you
tell it to continue but it always attempts to load the next line
in the template. When this option is not checked, Dialog
Editor behaves as if you pressed the Continue button at each
warning.

Utilities

79

 Save Tab
Prompt Before Saving Templates: When this box is
checked Dialog Editor will always ask you before it saves
your changes to a dialog template. Even if you do not check
this box, Dialog Editor will still prompt you to save a new
template, if you have not saved it before.
Save to clipboard same as save to file *: This option only
applies to templates loaded from the clipboard and when
checked it increases the possibility of data loss.
Use Control Style Constants: When this box is checked
(default) the Dialog Editor will use vertical bar (|) delimited
style constants instead of numbers in control style attribute
when a dialog template is saved to a file or a clipboard.

Restore
Defaults…

This command will return all user preferences under the
Options menu to their original settings. It will also make all
toolbars visible and positioned at either the top or bottom of
the main application window.

View
Edit Bar Check to make the Edit toolbar visible and uncheck to remove

the Edit toolbar from the screen.
Status Bar Check to make the Status bar visible and uncheck to remove

the status bar from the bottom of Dialog Editor’s main
window.

Control Bar Check to make the Control Palette toolbar visible and uncheck
to remove the Control Palette toolbar from the screen.

Align Bar Check to make the Control Align toolbar visible and uncheck
to remove the Control Align toolbar from the screen.

Grid Check to show the positioning grid in your dialog’s
background. This does not affect the appearance of your
dialog when you use your template in a script. The grid is
provided to assist you with control placement. When the
menu item is unchecked, Dialog Editor displays a background
bitmap, a selected background color, or the system default
background color. The background displayed when this menu
item is unchecked is determined according to following rules:

 • A bitmap is displayed if the Bitmap menu item is checked.
• If you have selected a background color and the Bitmap item
is not checked the selected background color is displayed.
• The system default dialog background color is displayed, if
you have not selected a background color and the Bitmap
menu item is not checked.

Utilities

80

 Note: the Bitmap item cannot be checked until you have
selected a bitmap for your dialog template.

Bitmap This menu item allows you to display or hide the dialogs
bitmap background.

Attributes… This menu item launches the Attributes property dialog.
Selecting the dialog or one of its controls enables this menu
item. The Attributes property dialog allows you to set the
values that define your dialog and the controls it contains.
The information you entered in this dialog becomes the
comma-delimited list of values for each control variable and
other template variables that define your dialog. You will see
from two to five tabs when you launch this dialog. The tabs
you see depend on the attributes of the visual object that is
selected when the Attributes Dialog is launched. The contents
of each tab of the Attributes Dialog also vary depending on
the attributes of the selected object.

 General Tab
The general tab can contain one or more of the following edit
boxes:

 Name: The control's name is used to identify the control in a
User-Defined Callback procedure. A control's name cannot
contain more than thirty characters and must be unique. The
name will be used as the third parameter to the UDF when a
control related event triggers a call. It is also used to identify
the control when calling any dialog callback related functions
requiring a control name.

 Tab Order: This edit box controls the order of the control
definitions in your dialog template. For example, if you give
a control the tab order value of "1", it will be the first control
listed in the dialog template. This position is important
because it determines the tab order of the controls in your
dialog and the tab order determines the sequence in which the
controls are selected when a user presses the TAB key to
move through the dialog. The Tab Order also affects the
appearance of your dialog, if you have overlapping controls.
When two or more controls overlap, the control with the
smallest Tab Order number will hide the overlapping portion
of any control with a bigger Tab Order number. Tabs in
Group Box control: The Group Box control owns all of the
controls inside of it and tends to use the tab order of the
Group Box. Its best to first set the tab order on each Group
Box and the controls that do not live in a Group Box. Then
set the tab order within each Group Box.

 Variable Name: Type the name of a WIL variable in the

Utilities

81

Variable Name edit box. Values assigned to this variable will
be used to set the displayed value(s) or initial state of the
control. The variable can also contain selection or state
information after the dialog is dismissed. This variable can be
shared by more than one control when it makes sense to do so.
It can also be used in WIL scripts, like any other WIL
variable, so it must conform to WIL identifier rules.

 Text: A control displays the text entered in this edit box.
 Value: This value is the number returned by the WIL dialog

function when the user presses the button control to close your
dialog. For this reason each Push or Picture button in your
dialog template must have a unique value. The value of a
selected Radio Button is placed in the Variable associated
with a group of Radio Button controls. You should, therefore,
assign a unique value to each Radio Button that shares a
common Variable.

 Caption: Enter the title of your template dialog here. The title
appears on the bar at the top of your dialog.

 Pre-selected Item: Use the Pre-selected Item edit box to enter
a default selection for controls that can display multiple
values. When a dialog is dismissed, the pre-selected item will
be placed in a controls variable, if the user has not selected an
item.

 Procedure: Place the name of your User-Defined Callback
procedure in this edit box. See the discussion of the User-
Defined Callback procedure in the Dialog function (WIL
reference manual) for more information. You do not need to
supply a value, if you do not wish to use a User-Defined-
Callback procedure.

 License String: For a COMCONTROL control that requires a
license, the quoted license string should be placed here. Use
the DEFAULT keyword as a placeholder if the control does
not require a license.

 ProgID/ClassID/URL:
ProgID is used with COMCONTROL controls and is the
programmatic identifier of an ActiveX , OLE or COM
component control that supports integration into an
automation client container. It is usually in the form
servername.classname.
ClassID can be used as alternative to a controls ProgID. It is a
sequence of hexadecimal numbers that must be quoted and
enclosed in a curly brace ({}) pair. It is usually in the form
"{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}"

Utilities

82

where each X is a hexadecimal digit.
URL: There are special monikers that can be used in this
attribute to implicitly use the WebBrowser control or
MSHTML COM component provided by Internet Explorer.
You can use the WebBrowser control by placing a quoted
URL moniker recognized by Internet Explorer in the attribute.
The URL can point to either a local file or a document on the
Internet. Use the Document control by specifying the
programmatic identifier "MSHTML:" in this attribute. You
can optionally add valid html text after the colon (:) and the
MSHTML document object will parse and render the html in
its window.

 Delimited File: For a REPORTVIEW control, to set to the
path and file name of a CSV file used to populate the control.
The file must meet the same CSV file requirements specified
for the ArrayFileGetCsv function and the value separator
must be a comma(,). The first line of the file can optionally
contain column headings. See the Style attribute for details.

 Format (dMyhHmdt'')
The text attribute is used to indicate the date/time format the
control displays. Specifying 'DEFAULT' or using an empty
string causes the control to use the current system default date
format. The following table lists the standard Windows
date/time format characters accepted and interpreted by the
control. Nonformat characters are accepted but they must be
with a few exceptions enclosed in single (') quotes.

Format Used For Description
d Days Displays the day as a number

from 1 to 31
dd Days Displays the day as a number

with a leading 0 if the
number is less than 10

ddd Weekdays Displays a weekday name
with 3 letters as Mon, Tue,
etc

dddd Weekdays Displays the complete name
of a week day as Monday, etc

M Months Displays the numeric month
from 1 to 12

MM Months Displays the numeric month
with a leading 0 if the
number is less than 10

Utilities

83

MMM Months Displays the short name of
the month as Jan, Feb, Mar,
etc

MMMM Months Displays the complete name
of the month as January, etc

yy Years Displays two digits for the
year as 16 for 2016 or 03 for
2003

yyyy Years Displays the numeric year
with 4 digits

h Hours Hours with no leading zero
for single-digit hours; 12-
hour clock

hh Hours Hours with leading zero for
single-digit hours; 12-hour
clock

H Hours Hours with no leading zero
for single-digit hours; 24-
hour clock

HH Hours Hours with leading zero for
single-digit hours; 24-hour
clock

m Minutes Minutes with no leading zero
for single-digit minutes

mm Minutes Minutes with leading zero for
single-digit minutes

s Seconds Seconds with no leading zero
for single-digit seconds

ss Seconds Seconds with leading zero
for single-digit seconds

t Time Mark One-character abbreviation
(for example, A or P)

tt Time Mark Two-character abbreviation
(for example, AM or PM)

 Style Tab
Use the Style Tab to choose the styles for your control. This
Tab only displays styles that are applicable to the selected
control. Check any style you wish the control to have.

 Invisible: Check this style and the control will not initially be
visible in the dialog.

Utilities

84

 Disabled: When this style is selected the controls appearance
will change to indicate that it cannot receive user input

 Center Text: This style causes a VARYTEXT or
STATICTEXT control to display text centered horizontally in
the control's rectangle. This style cannot be used with the
Right Align Text style.

 Right Align Text: A VARYTEXT or STATICTEXT with this
style displays text flush-right in the control’s rectangle. This
style cannot be used with the Center Text style.

 Numbers Only: Check this style for an EDITBOX and
MULTILINEBOX and the control will only accept digits.
Note that, even with this set, it is still possible to paste non-
digits into the control.

 Read Only: This style prevents a user from changing a
control’s text by typing new or editing existing characters.
Although this style can be applied to SPINNER controls, the
user can still change the value displayed by using the controls
up and down arrows.

 Password: Check this style and an EDITBOX control will
displays all characters as an asterisk (*) as they are typed into
the control.

 List Only: DROPLISTBOX control will only accept values
already in the drop down list portion of the control when this
style is checked.

 Default Button: PUSHBUTTONs or PICTUREBUTTONs
with this style is the default button when no other button has
the input focus. Because it is the default, your dialog user can
select this button by pressing the enter key, if no button has
the input focus. You should only give one button this style. If
this style is checked for more than one button, only the first
button (in the tab order) will have the style. Generally, apply
this style to the button that is the most likely option in your
dialog.

 Flat Appearance: PUSHBUTTONs or PICTUREBUTTONs
with this style, creates a button with a flat appearance. All
aspects of the button's border are removed including the 3D
shadowing.

 No Auto Height Resizing: FILELISTBOX or ITEMBOX with
this style, turns off automatic height adjustment feature.
Normally, these controls adjust their height so that they do not
display partial items.

 Security Shield Icon (Vista Only): Select this style to display

Utilities

85

the Security Shield icon on the left side of a PUSHBUTTON
or PICTUREBUTTON control. Use the Shield icon to
indicate that pressing the button will result in a request for
security elevation before processing the button’s associated
command. This style only affects systems running the Vista
version of Windows. Dialog Editor and the Dialog function
accept the style but do not display the icon on pre-Vista
systems.

 On Focus No Selection, Cursor at Beginning: Select this
style to place the cursor at the beginning of any text in the
EDITBOX control.

 On Focus No Selection, Cursor at End: Select this style to
place the cursor at the end of any text in the EDITBOX
control.

 No Column Headers: REPORTVIEW control, the header bar
is not displayed across the top of the control.

 First Row Column Header Text: REPORTVIEW control,
the first row of the source array or file is treated as column
header text.

 Display Grid Lines: REPORTVIEW control displays vertical
and horizontal lines to form a grid.

 Single Row Selection Only: REPORTVIEW control, only
one row can be selected at a time.

 Selection Highlighting Extends to All Columns:
REPORTVIEW control, selection highlighting extends to all
subitems in the selected row.

 Sort Ascending: REPORTVIEW control is populated with
rows ordered from lowest to highest first column values.
Sorts using an "intuitive" sort (See ArraySort for details).
The user can reorder control rows based on any column's
values by clicking on the column header.

 Sort Descending: REPORTVIEW control is populated with
rows ordered from highest to lowest first column values. Sorts
using an "intuitive" sort (See ArraySort for details) The user
can reorder control rows based on any column's values by
clicking on the column header. Note: if both sort ascending
and descending are used, sort ascending takes precedence.

 Allow Primary Item Edits: REPORTVIEW control, the first
column text can be edited in place.

 Display Checkbox(es): For REPORTVIEW control, enables
check boxes for each first column item in the control.

Utilities

86

For DATETIME control, adds a check box that indicates no
date/time value when unchecked.

 Return Column Headers: REPORTVIEW control, the
column header text is added as the first row of the array
returned from an item search request, a selected or checked
item request, or a request for all items of the control. This
style will also cause the control's associated variable to
contain the column header text as the first row of the array
referenced by the variable.

 Use a Spinner Instead of a Drop-down: DATETIME
control, replaces the controls drop down calendar with a
spinner. The spinner can be used to change the value of
individual elements of the displayed date/time.

 Position and Minimum Size Tab
The Position Tab is used to control the location of your dialog
on the screen.

 X Position: Use this box to specify the location of your
dialog’s upper left hand corner along the horizontal axis. This
value is expressed in dialog units.

 Y Position: Use this box to specify the location of your
dialog’s upper left hand corner along the vertical axis. This
value is expressed in dialog units.

 Use the Current Screen Location: Press this button to set the
location of your dialog’s upper left hand corner to its current
position on the screen. If the current values of X Position and
Y Position correspond to the current screen position, pressing
the button has no affect.

 Minimum Width and Height:
Use Sizing Dialog Borders
Check this box to allow the user to resize the dialog.
Minimum Width
Indicates the approximate minimum width of the dialog
window that can be set by the user dragging the dialog's
borders. The values are assumed to be in dialog units. When
this variable is defined in a dialog template, the dialog
becomes re-sizable by either directly dragging the dialog's
border or by using the 'Size' system menu.
Minimum Height
Indicates the approximate minimum height of the dialog
window that can be set by the user dragging the dialog's
borders. The values are assumed to be in dialog units and to
not include the height of the title and menu bars. When this

Utilities

87

variable is defined in a dialog template, the dialog becomes re-
sizable by either directly dragging the dialog's boarder or by
using the 'Size' system menu.

 Configuration Tab
The Configuration Tab allows you to control how the Dialog
Editor creates the Dialog statement.

 Use the default return variable name: Select this option and
Dialog Editor will use Pushbutton as the name of the Dialog
statement’s return variable.

 Use a unique return variable name: If you select this option,
Dialog Editor will prefix the name of the Dialog statement’s
return variable with the name of the dialog. For example, if
your dialog is named mydialog, the return variable will be
named mydialogpushbutton.

 Create a dialog function that WinBatch will process: Select
this option and the Dialog Editor will create a Dialog
command with the second parameter set to one (1). This tells
WinBatch to process the Dialog command by loading the
dialog template listed in the commands first parameter.

 Create a dialog function that WinBatch will ignore: Use this
option to have the Dialog Editor create a Dialog command
with the second parameter set to zero (0). When the second
parameter is zero WinBatch will ignore the command by
neither loading nor displaying your template and continuing to
the next statement in your script.

 Background Tab
Use the Background Tab to set your preferences for a
control’s or dialog’s background color or background bitmap.

 Use Default Background: Check this box if you want your
control or dialog to display the system default background.
The system default background depends on the type of control
and the system settings. For some controls the default
background is transparent so that the underlying dialog
background becomes the control's background.

 Background Color: This edit box is used to indicate the
background color of a control. Color is expressed as three
vertical bar (|) delimited numbers representing red, green and
blue. Valid red, green, and blue values range from 0 through
255, with 0 indicating minimum intensity and 255 indicating
maximum intensity. Controls that support background color
do not support bitmap background. This button launches the
color selection dialog. Use the dialog to select one of the
preset colors or press the Define Custom Color button to

Utilities

88

create your own color. When you press the Add to Custom
Color button, the Dialog Editor will remember the color the
next time you use the color selection dialog. If you select a
predefined or custom color with a mouse click, the RBG
values will be placed in the Background Color edit box for
you.

 Bitmap File: Use this edit box to enter the name and path of a
Bitmap file. The bitmap will become the background image
for your control or dialog. Colors that support bitmaps do not
support solid background colors directly. It is possible,
however, to create the same affect by specifying a solid color
bitmap for the control. This button launches a file selection
dialog. You can use this dialog to navigate your local file
system or network to find a bitmap file. When you select a
file and press the ok button, the complete bitmap path and file
name will appear in the Bitmap File edit box.

 Text Appearance Tab
Use this tab to control the font and color of a control’s text.

 Use Default Font and Color: Check this button if you want
your control to use the current system font and text color or
the dialog font or text color. A control will use the system
font and color when the dialog text appearance is defaulted,
otherwise, a defaulted control will use the system font and
color.

 Font and Color Selector…: Press this button to display the
font and text color selector. The selector dialog allows you to
view examples of and select available fonts and colors. When
you press the selector’s OK button, your selections will be
placed in the font and text color edit boxes. Note: When you
press the OK button, the selection dialog will replace the
DEFAULT setting with a specific font and text color. If you
do not wish to have specific values for both font and color,
simple replace the unwanted value by typing the DEFAULT
key word in the appropriate edit box.

 Font: This edit box contains four bar delimited (|) fields that
describe the font used to render text in a control. Although it is
possible to manually construct a font description, it is
recommended that you select your font with the Font and
Color Selector dialog and let Dialog Editor create the
description for you. If this attribute is set to DEFAULT, the
control will use your Dialog’s font or the system font for that
control when your dialog does have a font.

 Text Color: This edit box is used to indicate the text color of a
control. Text color is expressed as three vertical bar (|)

Utilities

89

delimited numbers representing red, green and blue. Valid
red, green, and blue values range from 0 through 255, with 0
indicating minimum intensity and 255 indicating maximum
intensity. When this attribute is set to DEFAULT, either the
system text color or your dialog’s text color will be used.

Show
Script/Show
Dialog

This menu item toggles between the script view mode and the
editor mode of Dialog Editor. The menu item’s text is Show
Script when the editor is displaying your dialog and Show
Dialog when editor is showing the script. Note: you cannot
change the script directly while in show script mode; all
changes must be made from edit mode.

Menu
Editor…

This menu item launches the WIL Dialog Menu Editor tool.
The Menu Editor dialog allows you to add a menu bar and
menu items to your dialog template. The following explains
the meaning and operation of each control in the Menu Editor
dialog.
Menu Type
The two Menu Type radio buttons allow you to choose
between editing the menus associated with the menu bar and
the menus associated with your dialogs default context menu.
• Menu Bar – edit your dialog's menu bar menu items
• Context – edit your dialog's default context menu items

Note: The Menu Type group is enabled only for editing your
main dialogs menus. Since controls only have a context menu,
this group is not enabled.
Control Type
This read-only text indicates the control type of the currently
selected menu control. It can display either MENUBAR or a
MENUITEM.
Name
This control is used to display and edit the control name
attribute associated with the currently selected menu bar or
menu item. The name is used to set the hierarchical
relationship between menus and submenus. It is also used as
the third parameter to your User-Defined Callback procedure
on menu selection when you are processing menu events in
your callback.
Text
This is the caption displayed by a menu item menu when its
associated menu is displayed. You can add an access key for
the menu item by placing an ampersand (&) immediately
before the character in the caption. The access key will cause
the menu item's selection while its hosting menu is visible.

Utilities

90

This attribute can also be used to associate a short-cut key
with the menu item. This is done by appending a single
backslash (\) to the caption followed by a key sequence. Use
the key representations established for the SendKey function.
The key sequence will automatically be converted to the
system's current key representations when it is displayed next
to the menu's caption in your dialog. Unlike an access key, a
user can select a menu item using a hot-key combination even
when the menu item and its menu are not displayed. Note:
Short-cut key combination should not be used with menu
items that display dropdown menus or submenus. It is not
considered good UI design and the menu caption may not
display correctly.
Parent
The name of the selected menu item's parent or host is
displayed here. The Parent name can be the name attribute for
a regular control, the menu bar, another menu item, or the
DEFAULT key word when the menu item is a top level menu
item of your dialog's context menu. The arrow buttons are
used to change a menu items Parent attribute.
Menu Styles
The check boxes in this group set the menu styles for the
currently selected menu item.

• Invisible – the menu item is not displayed by its menu.
• Disabled – the menu item has the disabled appearance

and does not generate a menu event.
• Separator – the menu item is displayed as a separator

bar. The menu item's text is ignored.
• Row Break – the menu item starts a new row on the

menu bar or a new column on other menus
• Check – the menu item displays a check mark to the

left of the item's text
• Radio – the menu item displays a dot to the left of the

item's text
Note: if both the Check and Radio style are selected, the
Check style will take precedence.
Left Arrow
Press this button to decrease the menu level of the currently
selected menu. When the menu level is decreased the menu
item may because a part of a different menu in the hierarchy.
A change to the menu's relative position in the menu hierarchy
will cause a change in the menu item's Parent name attribute.
Right Arrow

Utilities

91

Use this button to increase the menu level of the selected
menu item. Increasing the menu level can cause the selected
menu item to be the start of a new submenu or dropdown
menu. Any change to the menu's relative position in the menu
hierarchy will be reflected in the menu item's Parent name
attribute.
Up Arrow
You can move the selected menu item up in the display order
with this button. Depending on the menu items current level
and the level of surrounding menu items, moving a menu item
up can also cause a change in the menu items menu
membership. Any change in menu membership is reflected in
the Parent name attribute and the position change is reflected
in the Position attribute.
Down Arrow
This arrow button moves the selected menu item down in the
display order. When a menu item is moved it can cause both a
change in the Position attribute and a change in the Parent
name attribute. A change to the Parent name attribute also
changes the menu that displays the menu item.
New
This button creates a new menu item or the menu bar in the
menu list. If a menu item is already selected, the new menu
item will have the same menu level as the selected item. It
will also be positioned just below the selected menu item. If
the Menu Bar radio button is selected and the dialog does not
already have a menu bar, a menu bar is created the first time
this button is pressed.
Delete
Press this button to remove the selected menu item from menu
item list. If the menu bar is selected the entire menu hierarchy
is deleted. Deleted items are not removed from your dialog's
template until either the Menu Type radio button selection is
changed or the OK button is pressed.
Menu List View
The Menu List View is a two column list representing the
menu bar and its menu items or the menu items of a context
menu. The first column shows a menu item's caption and the
second column shows the name of a menu item or the menu
bar. Selecting an item from the list allows you to edit the
attributes for that menu control.
The indentation level of the menu item in the Menu List View
determines whether the menu item causes a menu command
event or causes another menu to be displayed.

Utilities

92

A menu item that appears flush left in the list is displayed
when the context menu is displayed. These menu items can
either cause a menu command event or a submenu, depending
on the level of subsequent menu items.
The menu items indented one level are displayed on the menu
bar. These menu items are best used to display dropdown
menus. A menu item indented more than the preceding menu
item is displayed on a submenu or dropdown menu when the
user clicks the preceding menu item. A menu item followed
by menu items that are further indented displays a submenu or
a dropdown menu. The further indented items become menu
items of that submenu or dropdown menu.
OK
Choose this button to verify and save changes to your dialog
template before exiting the Menu Editor dialog.
Cancel
Choose this button to exit the Menu Editor dialog without
saving changes.

Insert
Each menu item, with the exception of the Unselect item, represents one of the
controls supported by the WIL dialogs. When you select one of the menu items
and move the mouse cursor of your dialog, the cursor will change to crosshairs.
The cursor indicates where the selected control will be created when you left click
or press the Enter key. Click the Unselect menu to cancel your selection and
restore normal function and appearance to the cursor. The Control toolbar
provides another way to access this same functionality.

Unselect
Calendar
Check Box
Com Control
DateTime
Drop-down Combo Box
Edit Box
File List Box
Group Box
Item List Box
Multiline Edit box
Picture
Picture Button
Push Button
Radio Button
Report View
Spinner

Utilities

93

Static Text
Variable Text

Align
The align menu items allow you to align the sides of two or more controls along
one of their sides. You can select controls for alignment by pressing the Control
(Ctrl) key and left clicking on each control you wish to align. All selected controls
will be aligned to the last control you select, when you perform the alignment. All
alignment menu items have corresponding buttons on the Alignment toolbar.
Right Use this menu item to align selected controls along their

right side.
Left This menu item will align selected control along their left

side.
Top Use this menu item to align selected controls along the top.
Bottom This menu item will align selected controls along the

bottom.

Test
Run Dialog Use this menu item to run your dialog from within the

editor. You can see how the finished dialog looks and test
the tab order. You can terminate the dialog when you are
finished by clicking a button or by pressing the Return or
Escape key. Dialog Editor will not allow you to run your
dialog, if you do not have at least one button defined.

Help
Dialog Editor
Help

This menu item launches Dialog Editor help’s table of
contents page in the WinBatch help file.

About Dialog
Editor…

You will find version information here, along with a handy
link to the WinBatch web site.

User Interface
Here are the techniques for designing your titles and controls.

Dialog Box Caption
Dialog boxes have both an internal and external name. The dialog Caption is the
title of the dialog box as it appears in the title bar. The Variable Name is the name
of the dialog as seen in the script. This information can be entered or changed at
any time. However, we suggest specifying it whenever you start a new dialog box.
To display the caption dialog:

Utilities

94

Right click on the workspace background, (not on a control), and select the
attributes menu item

Or

From the View menu (with the dialog highlighted) select the Attributes... menu
item.

Size the Dialog Box
The dialog that is generated by the WIL Dialog Editor will be the same size as the
dialog that you create in the editor's window. To control the size of your dialog
box, select the entire dialog by clicking on the title bar. The dialog should now be
highlighted. Next, move your mouse cursor to the highlighting at the edge of the
dialog. When the mouse cursor changes to an arrow, you can drag and drop the
sides of the dialog to the appropriate size.

Setting Control Attributes
The Dialog Editor has a variety of controls which can be selected to create a
customizable user interface.
To add a control:
Select the control from the icons on the Control toolbar. Or from the Insert menu,
select the appropriate control. When you select one of these menu items and move
the mouse cursor of your dialog, the cursor will change to crosshairs. The cursor
indicates where the selected control will be created when you left click or press the
Enter key. Click the Unselect menu to cancel your selection and restore normal
function and appearance to the cursor.
Define attributes for a control:
Right-click on the control. Select Attributes... and fill in the information in
resulting dialog box about the control. The control may need a Variable name, a
Value or Text. Not all information will be needed for each control. When you've
finished, select the OK button.
After a control has been created in your dialog box you can move it, size it, or
delete it. To MOVE the control, click on it and drag it to a new position with the
left mouse button. To SIZE a control, click on the edge and drag with the left
mouse button. To DELETE a control, position the mouse over the control and
press the delete key.
Note: Some of the Controls require extra knowledge or special handling.
You can have a maximum of 300 controls in a dialog.

Utilities

95

Controls and Their Attributes
 Variable/

License
String /
Parent
Name

[*]

Text/
pre-sel/
moniker

[**]

Value Style Tab
Ord /
Pos

[***]

Font Text
color

Back
ground
[****]

Push Button T TO C
Picture T TO B
Radio Button V T TO C
Check Box V T TO C
Picture Button T TO B
Edit Box V T TO C
Multiline Edit
Box

V T TO C

Group Box T TO C
Item List Box V P TO C
File List Box V P TO C
Spinner V T TO C
Static Text T TO C
Variable Text V T TO C
Calendar V TO
Drop-down
Combo Box

V T TO C

Com Control L M TO C
Report View V T TO C
DateTime V T TO C
MenuItem PN T RP
MenuBar
[*] V = variable, L = license string, PN = parent name
[**] T = control text, P = pre-selected value, M = progid/classid/moniker
[***] TO = tab order, RP = relative position
[****] B = bitmap, C= color spec.

Setting Variables
Any information which is needed by the Dialog Box Controls should be set up in
the script prior to the dialog code. By setting the variables, you can pass lists, files,
and set which options are chosen by default.

Utilities

96

Control Attribute Specifics
For more details about the specific control attributes, see the Dialog command in
the Windows Interface Language reference manual. Some of the Controls require
extra knowledge or special handling, as in the following:

Calendar
The Calendar control has a calendar-like user interface. This provides the user with
a very intuitive and recognizable method of entering or selecting a date. A user can
select a day from the current month and year by simply clicking on a day number.
A user can scroll the months of the year by clicking the arrow buttons in the top
left or top right of the control.
To select a non-adjacent month, the user can click the name of a displayed month
and a pop-up menu appears that lists all months within the year. The user can
select a month on the list. If the user clicks the year displayed next to a month
name, a Spinner control appears in place of the year. The user can change the year
with this control.
Note: You can change the control’s font by providing a font string in the Font
attribute. However, you cannot change the text or background color of this control.
The Calendar control will return the user’s selection in the variable you supply as
the Variable attribute in the control’s definition. The date will be returned in the
standard WIL YYYY:MM:DD:HH:MM:SS date time format.

Check Box
A Check Box is a square box, in which a check mark appears when selected. The
Check Box offers a way to present a variety of options. Each Check Box has its
own specific information. Variable, Value and Text are all different, allowing the
user to select more than one. Any number may be marked or left unmarked.
A Check Box can have a value of 0 (unchecked) or 1 (checked). Each Check Box
in a dialog should use a unique Variable. The Check Box control will return the
user’s selection in the variable you supply as the Variable attribute in the control’s
definition. The value 1 indicates the control was checked, and 0 indicates the
control was not checked.
Normally when a dialog box opens, every Check Box defaults to being unchecked.
However, the Check Box can be checked by default, by assigning a value of 1 to
the variable before calling the Dialog function.

COM Control
The COM Control is used to host an ActiveX, OLE, VB, or COM component
control. You indicate the specific control by placing a programmatic identifier
(progid), class identifier (classid) or moniker in the text attribute of the COM
Control definition string.

Utilities

97

If the control requires a license, place the license string in the Variable attribute. If
all computers that execute your script have a machine license then you can set the
Variable attribute to an empty string (""). The DEFAULT keyword should be
used as a placeholder in the Variable attribute position when the control does not
require a license.
You can include text font, text color and background color information in the
appropriate attribute fields of the control definition string. However, many COM
based controls ignore this information. As an alternative, many controls provide
properties and methods to change the appearance and behavior of the control. To
use these properties and methods you can use the DialogObject function to obtain
a reference to the control in the initialization (0) call of a User-Defined Dialog
Callback Procedure. Once you have the control reference, you can directly access
the properties and methods of the control using standard COM dot notation.
Many COM Controls support COM events. Events are notifications passed back to
the control's container when a use action occurs or a control's state changes. COM
events often provide detailed information about the event and some even allow
you to pass information back to control. You can receive COM events and related
information in your dialog's Callback Procedure by using the DialogObject
function to indicate which control events should cause your Dialog Callback
Procedure to be invoked by the control. You can find more information about
event handling, including an example, under the DialogObject help topic in the
Windows Interface Language manual or help file.

DateTime Control
The DATETIME control is the WIL Dialog implementation of the Date and Time
Picker Windows Common Control. It can be used to both display and receive date
and time input in multiple formats.
The standard YYYY:MM:DD:HH:MM:SS date/time input can be displayed in
various ways using the control's text attribute Format(dMyhHmst'').
A drop down calendar is available for changing the date input. The method of
selecting a day, month, or year are the same as the Calendar Control. A user can
select a day from the current month and year by simply clicking on a day number.
A user can scroll the months of the year by clicking the arrow buttons in the top
left or top right of the control. To select a non-adjacent month the user can click
the name of a displayed month, a pop-up menu appears that lists all months within
the year. The user can select a month on the list. If the user clicks the year
displayed next to a month name, a Spinner control appears in place of the year.
The user can change the year with this control.
For the drop down calendar you can also specify the initial month/year to display,
along with a minimum and maximum calendar date that can be displayed. The
calendar's font, background color, and font color can be changed.
Other style options are making the display invisible, disabling the display,
displaying a check box that indicates no date/time value when unchecked, and
specifying a spinner in place of the drop down calendar.

Utilities

98

The DateTime control will return the user's selection in the variable you supply as
the Variable attribute in the control's definition. The date will be returned in the
standard YYYY:MM:DD:HH:MM:SS date/time format.

Drop-down Combo Box
The Drop-down Combo Box control is made up of two parts: an Edit Box and a
drop-down Item Select List Box. A user can enter a value in the Edit Box or select
a suggested value from the list of drop-down menu items. The Drop-down Combo
Box is displayed by clicking on the arrow next to the Edit Box.
To size the Edit Box: Drag the left or right edge of the control to the necessary
width.
To size the Drop-down box: Click on the arrow next to the Edit Box. You will
notice the highlighting changes on the control. You can now drag the top or
bottom edge of the control to the necessary height.
Generally, a Drop-down Combo Box is appropriate when there is a list of
suggested choices, and an Item Select List Box is appropriate when you want to
limit input to what is on the list. In addition, a Drop-down Combo Box saves
space on your dialog because the full list is not displayed until the user clicks the
down arrow. You specify the items for the Drop-down Combo Box list by placing
a delimited list of values in the variable named in the control's Variable attribute.
You can give the Edit Box portion of the control an initial value by placing a string
in the Text attribute of the control’s definition.
Drop-down Combo Box returns the user’s choice in the variable named in the
Variable attribute.

Edit Box
A box in which text can be typed. Normally, when a dialog box opens, Edit Boxes
are empty. You can specify a default string to display by assigning a value to the
Variable before calling the Dialog function.
Whatever the user types in the Edit Box is placed in the variable named in the
Variable attribute
Note: Variable names that begin with "PW_", will be treated as password fields
causing asterisks to be echoed for the actual characters that the user types.

File List Box
A File List Box is a file selection list box that allows the user to select a file from
any directory or drive on the system.
 In combination with the File List Box, you can include an Edit Box control, which
has the same variable named in the controls Variable attribute, as the file list box.
If you do, the user can type a file mask into the edit box (e.g., "*.TXT"), which
will cause the File List Box to be redrawn to display only those files which match
the specified file mask.

Utilities

99

Also in combination with the File List Box, you can include a Variable Text
control which has the same variable named in the controls Variable attribute, as
the file list box. If you do, this control will show the name of the directory
currently displayed in the file list box.
For File List Boxes, Text should be DEFAULT. Normally, when a dialog box
opens, file list boxes display files matching a file mask of "*.*" (i.e., all files). You
can change this by assigning a different file mask value to the variable before
calling the Dialog function. Set your variable to display a directory path and file
mask, i.e. wbtfiles="C:\WINBATCH*.WBT". Upon returning the value of the
variable will be set to the selected filename; if you need to know what directory
the file is in, use the DirGet function after the Dialog exits.
For multiple selections or to display pre-defined lists, use the Dialog Editor's Item
List Box or Drop-Down Combo Box option.
Note: When File List Box is used, the dialog editor assumes that a file must be
chosen before it proceeds. Add the following WIL command to the top of your
script if you wish to allow the dialog to proceed without a file selection.
IntControl(4,0,0,0,0)
When no file is selected, the return value of the filename variable is:
"NOFILESELECTED". For more information on IntControl, see the Windows
Interface Language manual or on-line WIL help file. Note: You can have only
one File List Box in a dialog.

Group Box
The Group Box control is a rectangle that surrounds a set of controls, such as
Check Boxes or Radio Buttons, with text in its upper left corner. The sole purpose
of a Group Box control is to organize controls related by a common purpose
(usually indicated by the text).
Along with text, you can specify Font, Text color and a Background color for the
control. The Background color applies to the area immediately behind the text in
the upper left corner. It does not change the background in the majority of the
control.
Tabs in Group Box control: The Group Box control owns all the controls inside of
it and it tends to use the tab order of the Group Box. Its best to first set the tab
order on each Group Box and the controls that do not live in a Group Box. Then
set the tab order within each Group Box.

Item List Box
An Item List Box is a selection list box. The Item List Box allows the user to
choose an item from a list box. This option is similar to the WIL function
AskItemList. The variable, defined in the controls Variable attribute, is assumed
to contain a tab delimited list. The user may choose none, one, or more items in the
list. When the dialog box is closed, the selected items are returned via the variable,

Utilities

100

defined in the controls Variable attribute, as a tab delimited list. If the user selects
more than 99 items, an error will occur.
Note: The list is loaded into the list box in the original order (Use the WIL
ItemSort function if a sorted list is desired.). By default, the Item List Box allows
multiple selections. To disable this feature use IntControl 33.

IntControl(33, 0, 0, 0, 0)

For more information on IntControl, see the Windows Interface Language manual
or WIL help file.

Multiline Edit Box
A Multiline Edit Box is an edit box type of control which allows a user to enter
multiple lines of text.
To resize the Multiline Edit Box, simply click on the edge and drag with the left
mouse button. You can specify a default string to display, by assigning a value to
the Variable, named in the Variable attribute, before calling the Dialog function.
Whatever the user types in the Multiline EditBox is placed in the variable named
in the Variable attribute

Picture
The Picture control is a simple control you use to display a bitmap. You indicate
the bitmap to display by placing the bitmap file name and, optionally, the file path
in the Background Bitmap Attribute of the control.
If you supply a file path, WinBatch will check the supplied path for the bitmap
file, before checking other locations. If it does not find the file or if you do not
supply a path, WinBatch will search the current directory, the windows directory
and the WinBatch directory for the bitmap file.
Although the control does not normally display text, you can still place text in the
Text attribute. WinBatch will display the text when it cannot find the bitmap
indicated in the Background attribute while loading the dialog template.
Your bitmap does not need to be the same size as the Picture control. The
appropriate stretch or compress is applied to the bitmap, so that the entire image is
displayed. However, if the aspect ratio of your control is significantly different
from the bitmap’s aspect ratio, your image may appear distorted.
To resize the Picture control, simply click on the edge and drag with the left mouse
button.

Picture Button
The Picture Button control is a push button that displays a bitmap on its face
instead of text and a background color. You indicate the bitmap to display by
placing the bitmap file name and, optionally, the file path in the Background
Bitmap Attribute of the control.

Utilities

101

If you supply a file path, WinBatch will check the current working directory first
for your bitmap file. The current working directory is always searched before the
file path is used to find a bitmap.
Although the control does not normally display text, you can place a text string in
Text attribute. WinBatch will display the text when it cannot find the bitmap
indicated in the Background attribute while loading the dialog template. Also, if
you include an ampersand in the text, your users will be able to use an accelerator
key to navigate to the button just like they can with regular push buttons.
Your bitmap does not need to be the same size as the Picture Button control. The
appropriate stretch or compress is applied to the bitmap, so that the entire image is
displayed. However, if the aspect ratio of your control is significantly different
from the bitmap’s aspect ratio, your image may appear distorted.
To resize the Picture Button control, simply click on the edge and drag with the
left mouse button.

Push Button
A button, which can be labeled and used as desired. When creating Push Buttons,
each button must have a separate value.
We recommend assigning the value of 1 to your "OK" button equivalent and the
value of 0 to your "Cancel" button equivalent.
When the user presses a pushbutton, the Dialog function will exit and will return
the Value assigned to the button which was pressed. Therefore, you should assign
a unique Value to each Push Button in a dialog.
A Push Button with the Value of 0 has special meaning. If the user presses a Push
Button which has a Value of 0, the WIL program will be terminated (or will go to
the label marked ":CANCEL", if one is defined); this corresponds to the behavior
of the familiar Cancel button. For more information on "Cancel", see the Windows
Interface Language manual or WIL help file.
The default Push Button that is selected if the user presses the Enter key is the
Push Button with the focus or, if no button has the focus, the default button
specified with the style bit of that control.
An ampersand in the button text, acts as an accelerator key for button navigation.
For pushbuttons, the Variable attribute should be DEFAULT.
The Dialog Editor adds a line to the end of your script which helps to test return
values.

Buttonpushed=Dialog("MyDialog",1)

To test the return value, do the following:

If Buttonpushed == 1 then goto label

Note: Every dialog box must contain at least one pushbutton.

Utilities

102

Radio Button
Radio Buttons are used to select one item over another. The Variable assigned to
the Radio Button should be the same for each of the choices but the Values should
be different. For example, the script in a Dialog may look like:

MyDialog03=`33,9,84,14,RADIOBUTTON,"RadioButton_Blues",music,"Blues",1,DE
FAULT,[…]`
MyDialog04=`33,31,84,14,RADIOBUTTON,"RadioButton_Jazz",music,"Jazz",2,DEF
AULT,[…]`

The Variable "music" is the same on both lines but the Text and the Value
attributes are different.
Note: Radio Button cannot have a value of 0.
To test the return value, the variable can be placed in an If structure.

If music == 1
 Message("Music", "Let's play the blues.")
Else
 Message("Music", "Let's play the Jazz.")
Endif

Don't limit yourself to using If/Endif statements. The Switch structure provides a
more efficient way to test multiple values. For more information on Switch, see
the Windows Interface Language manual or WIL help file.

Report View
The Report View control is a ListView common control with the 'report' Windows
style. It can be used as either a simple grid control, when a full featured grid
control is not needed, or as an advanced version of the WIL dialog ITEMBOX
control.
The Variable, defined in the controls Variable attribute, is assumed to contain an
array of values to display in the control. When the Variable is used to populate the
control, the control will have a column for each column in the array. The array can
optionally contain text for each column heading in the first row of the array. See
the Style attribute for details. Note that the array variable contents will only be
used to populate the control when the Text attribute is set to 'DEFAULT'. Upon
return of the Dialog this Variable will contain an array of user selected rows from
the control.
The Text attribute can either be set to 'DEFAULT' or set to the path and file name
of a CSV file used to populate the control. The file must meet the same CSV file
requirements specified for the ArrayFileGetCsv function and the value separator
must be a comma (,). The first line of the file can optionally contain column
headings. See the Style attribute in the WinBatch Help file for details.

Utilities

103

Spinner
The Spinner control has a pair of arrow buttons which the user can click to
increment or decrement a value displayed in a small edit box connected to the
arrow buttons. Use the control’s Variable attribute to set the range of values that
the control will display. The Variable should contain a vertical bar (|) delimited
list with two or three items. Make the first item the minimum value and the
second the maximum value. The minimum value can be greater than the
maximum value but both values must be in the range of –32768 to 32767 and the
difference between the values cannot exceed 32767. The third value indicates the
amount to add or subtract from the displayed number each time the user clicks an
up or down arrow (or presses the arrow keys when the control has the input focus.)
The control adds or subtracts one (1) each time, if you do not supply the third
value.

var = "{minimum} | {maximum} | {increment}"

The final Value selected by the user is placed in the Variable when the Dialog
function returns. You can indicate the initial value for your control by placing a
number in the Pre-Selected Item attribute of the control definition. The control
will default to the minimum value if you do not indicate an initial value or if your
initial value does not fall within the range you have selected in the Variable
attribute.

Static Text
Use the Static Text control to display labels, descriptions, explanations, or
instructions. The Control Attribute box will let you type an endless amount of
information into the text box. However, its display capability is limited by the
defined coordinates (bounding rectangle). If you want to display a lot of text, you
should simply create several Static Text fields. Be careful using variable
substitution, because you could receive the error: 3101: Substituted line too long
(>2048 Characters)

Variable Text
Variable Text is used to display text data which may change, like a date or a
password.

Menu Bar
A Menu Bar is a horizontal bar that appears at the top of your dialog just below the
title bar. A Menu Bar contains menu items. Generally, menu items displayed in
the menu bar cause dropdown menus to be displayed when selected by the user.

Menu Item
Menu Items can be displayed on a menu bar or as a menu item associated with a
drop-down, context menu or submenu. Dropdown menus are created by placing

Utilities

104

the name of a Menu Item displayed in the menu bar in the parent attribute of the
menu item's template entry. A submenu is started by placing the name of a Menu
Item other than a menu bar displayed menu item in the parent attribute.
Context menus are usually activated by right-clicking the client area of a control or
dialog. Create context menus by specifying the name of a control in the parent
attribute. If you use the DEFAULT keyword as the Menu Item parent, the context
menu will be associated with the dialog and display when the user right-clicks on
an 'empty' area of the dialog or on any control that does not already have a system
or template supplied context menu.

Saving Dialog Scripts
Once you are happy with your work, choose "Save" or "SaveAs" from the File
menu to save your work to a file. Choose "Save to Clipboard" to put the work
into the clipboard so that it can be easily pasted into one of your WIL scripts.

View the Script
To view the script code that gets generated by the WIL Dialog Editor, select the
View | Show Script menu item.

Analyze the Script
The Dialog Editor follows a specific format when creating your script. For
example, here is a dialog box we created.

Utilities

105

The first line of a script sets the format and specifies the version of the Dialog
Editor being used. As you can see in the example code below, the dialog variable
name, in this case "Ex" precedes all of the keywords.

ExFormat=`WWWDLGED,6.2`

The next section establishes the caption which will appear in the title bar of the
dialog box along with the coordinates, procedure information, font, background
and number of controls in the dialog box.

ExCaption=`Dialog Editor Example`
ExX=002
ExY=050
ExWidth=158
ExHeight=139
ExNumControls=013
ExProcedure=`DEFAULT`
ExFont=`DEFAULT`
ExTextColor=`DEFAULT`
ExBackground=`DEFAULT,DEFAULT`
ExConfig=0

The third section contains the code for the actual controls. Each line has specific
information. There will be one line for every control in the dialog box.

Ex001=`009,119,048,014,PUSHBUTTON,"PushButton_OK",DEFAULT,"OK",1,1,DEFAUL
T,DEFAULT,DEFAULT,DEFAULT`

The table below shows what the first line (Ex001...) means.

Code Definition
Ex Dialog Variable Name
001 Control Number
009,119,048,014 Coordinates of the control
PUSHBUTTON Control type
PUSHBUTTON_OK Control name
DEFAULT Variable name
OK Text
1 Value
1 Tab-order
DEFAULT Style
DEFAULT Font
DEFAULT Text color

Utilities

106

DEFAULT Background

Each Dialog script will end with the following line, making it easy to test the push-
button return values.

ButtonPushed = Dialog("Ex",1)

The variable "ButtonPushed" will be equal to the value of whichever button was
pushed by the user. So in the example below, if ButtonPushed == 1, then the user
pushed the OK button. If ButtonPushed == 0, then the user pushed the Cancel
button.
Put all the parts together and the completed script looks like the following.

;preset variables
;the list for the item box.
tunes = StrCat("My Shirona",@tab,"In the Mood", @tab, "StayingAlive",
@tab, "RockLobster", @tab, "Tequila")

song = "Yellow Submarine" ; the contents of the varytext.
music = 2 ; sets this radiobutton as default
volume = 1 ; pre-selects checkbox.

ExFormat=`WWWDLGED,6.2`

ExCaption=`Music Selection`
ExX=002
ExY=050
ExWidth=158
ExHeight=139
ExNumControls=013
ExProcedure=`DEFAULT`
ExFont=`DEFAULT`
ExTextColor=`DEFAULT`
ExBackground=`DEFAULT,DEFAULT`
ExConfig=0

Ex001=`009,119,048,014,PUSHBUTTON,"PushButton_OK",DEFAULT,"OK",1,1,DEFAUL
T,DEFAULT,DEFAULT,DEFAULT`
Ex002=`071,119,048,014,PUSHBUTTON,"PushButton_Cancel",DEFAULT,"Cancel",0,
DEFAULT,DEFAULT,DEFAULT,DEFAULT,DEFAULT`
Ex003=`087,077,034,016,RADIOBUTTON,"RadioButton_Blues",music,"Blues",1,DE
FAULT,DEFAULT,DEFAULT,DEFAULT,DEFAULT`
Ex004=`087,061,034,016,RADIOBUTTON,"RadioButton_Jazz",music,"Jazz",2,DEFA
ULT,DEFAULT,DEFAULT,DEFAULT,DEFAULT`
Ex005=`087,041,034,014,RADIOBUTTON,"RadioButton_Rock",music,"Rock",3,DEFA
ULT,DEFAULT,DEFAULT,DEFAULT,DEFAULT`
Ex006=`047,095,034,014,CHECKBOX,"CheckBox_LOUD!",volume,"LOUD!",1,DEFAULT
,DEFAULT,DEFAULT,DEFAULT,DEFAULT`
Ex007=`087,095,034,014,CHECKBOX,"CheckBox_Quiet",volume2,"Quiet",2,DEFAUL
T,DEFAULT,DEFAULT,DEFAULT,DEFAULT`

Utilities

107

Ex008=`009,095,034,014,STATICTEXT,"StaticText_VOLUME",DEFAULT,"VOLUME",DE
FAULT,DEFAULT,DEFAULT,DEFAULT,DEFAULT,DEFAULT`
Ex009=`007,007,110,014,STATICTEXT,"StaticText_2",DEFAULT,"What is your
listening pleasure?",DEFAULT,DEFAULT,DEFAULT,DEFAULT,DEFAULT,DEFAULT`
Ex010=`007,053,064,040,ITEMBOX,"ItemBox_1",tunes,DEFAULT,DEFAULT,DEFAULT,
DEFAULT,DEFAULT,DEFAULT,DEFAULT`
Ex011=`069,025,056,014,STATICTEXT,"StaticText_3",DEFAULT,"Type
Preferred?",DEFAULT,DEFAULT,DEFAULT,DEFAULT,DEFAULT,DEFAULT`
Ex012=`007,023,056,014,VARYTEXT,"VaryText_1",song,"Choose a
title",DEFAULT,DEFAULT,DEFAULT,DEFAULT,DEFAULT,DEFAULT`
Ex013=`007,039,062,014,EDITBOX,"EditBox_1",song,DEFAULT,DEFAULT,DEFAULT,D
EFAULT,DEFAULT,DEFAULT,DEFAULT`

ButtonPushed=Dialog("Ex")

Note: The songs that appear in the ItemSelect Listbox are listed earlier in the
script on one continuous line as the variable, tunes. i.e.

tunes = StrCat("My Shirona", @tab, "In the Mood", @tab, "StayingAlive",
@tab, "RockLobster", @tab, "Tequila")

Variables can be defined above the dialog script or in another WBT file above the
statement which calls the dialog file.

NT 4.0 limitations:
The dialog size may not be properly adjusted to account for multi row menu bar
when a menu bar displays enough menu items to cause the menu bar to
automatically wrap to a new row.
Context menus may not work when associated with a DROPLISTBOX controls.

Window Information Utility
The Window Information utility can grab window position settings from windows
displayed on your monitor. This utility can be launched from the WinBatch
Navigator (WinBatch.exe). Under the heading "Utilities" select the "Window
Information" button.

Utilities

108

Using the Window Information Utility

The Window
Information utility
is a handy window
name and position
grabber

The Window Information utility lets you take an
open window that is sized and positioned the way
you like it, and automatically create the proper
WinPlace statement for you. (WinPlace is a WIL
function, useful for repositioning or resizing
windows.) It puts the text into the Clipboard, from
which you can paste it into your WIL program.
The Window Information utility captures
coordinates in a 1000 by 1000 format that is relative
to the current screen size. Since WinBatch considers
every screen to have a 1000 by 1000 size, your sizing
will always take up the same percentage of the user’s
screen. One eighth of a screen at 1024 by 768 screen
resolution is actually much larger than the same
eighth is at 640 by 480 pixels resolution.

Design your
dialog boxes to be
about 250 by 250
in size or larger.
Then they will be
prominent at all
resolutions.

The Window Information utility captures relative screen coordinates. You’ll
need a mouse to use the Window Information utility. While the Window
Information utility is the active window, place the mouse cursor over the window
you wish to create the WinPlace statement for, and press the spacebar. The new
statement will be copied into the Clipboard. Then press the Esc key to close the
dialog.

FileMenu
Menu Utility for the Windows Explorer

Description
FileMenu is a menu-based WIL (Windows Interface Language) application.

Utilities

109

FileMenu is a menu utility Dll for the Windows Explorer. FileMenu allows you to
add custom menu items to the context menus (that appear when you right-click on
a file in the Windows Explorer). Two types of menus are supported:

• A global menu, which is added to the context menu of every file.
• A file-specific "local" menu, whose entries depend on the type of file that

is clicked on.

FileMenu.exe
FileMenu requires a version of Windows supporting the 32-bit subsystem.
On 64-bit platforms you can run the provided "filemenu.exe" to simply run
Windows Explorer.

Installation
FileMenu.dll is installed during the normal setup of WinBatch. "Filemenu.exe" is
installed to the Start Menu.

Operation
FileMenu can add menu items to the following types of context menus:

• The context menus that appear when you right-click on a file (but not a
folder) in the Windows Explorer.

• The context menus that appear when you right-click on a file (but not a
folder) in a browse window (for example, if you select Start Run from
the Taskbar, and then press Browse).

• The Explorer File pull-down menu, when a file (but not a folder) is
highlighted in the Explorer window.

• Files (or Shortcuts to files) on the Windows desktop.

Menu Files
FileMenu can add two menu files onto a file’s context menu: the "all filetypes"
menu, which is added to the context menu of every file, and a file-specific menu,
whose entries depend on the type of file selected.
A menu file can be created or edited by selecting ' Edit File Menus' from
FileMenu. This option opens the WinBatch Studio and loads either a file-specific
menu or the "all filetypes" menu. Modifications to menu files are made once the
file is saved.
Menu files are discussed in the Windows Interface Language manual under the
topic Menu Files.

Utilities

110

Using the "all filetypes" File Menu
The "all filetypes" menu adds additional menu choices to the context menu which
appears when you right click on ANY file in an Explorer window, or any file on
the desktop. The following is a sample context menu. The menu options displayed
are samples of the file operations which can be performed.

With FileMenu, the sample "all filetypes" menu starts with Two Explorers, side
by side and continues down to Edit File Menus. When a pop out option is
highlighted, an additional explanation of what the option does will be displayed on
the status bar of the Windows Explorer.
The "all filetypes" menu can be modified with the context menu option Edit File
Menus | Edit menu for all filetypes. This option opens WinBatch Studio with
the "all filetypes" menu loaded. Changes are effective when the file is saved.
Note: The contents of the "all filetypes" menu file may vary from release to
release as we continue to improve the sample menus.

Creating/Modifying File-Specific Menus
A file-specific menu allows you to create custom menus for any file type. These
menus are shown only when a file of that file type is right-clicked on in the
Windows Explorer.
File-specific menu files can be created or modified using the context menu item
Edit File Menus / Edit menu for this filetype. When this option is selected,
FileMenu looks for an existing file type menu in the file: FileMenu.ini. If the type
menu is found, it is opened in WinBatch Studio. If no file is found, FileMenu
creates a new menu file for that file type. FileMenu.ini is automatically updated
and the new menu file is opened in Windows Notepad. The new file-specific
menu will have a sample menu to help you get started.

Utilities

111

FileMenu.ini
The menu file names used by FileMenu are defined in the file FileMenu.ini, which
is located in your WINBATCH\SYSTEM directory. A sample FileMenu.ini is
provided. The menu files can be located anywhere on your path. Or, you can
specify a full path in FileMenu.ini.
By default, the "all filetypes" menu is named "FileMenu for all filetypes". This
default can be changed by editing the "CommonMenu=" line in the [FileMenu]
section to point to a different menu file. If you do not wish to use the "all
filetypes" menu file, specify a blank value to the right of the equals sign; i.e.,
"CommonMenu= ".
To use a file-specific menu, add a line of the form "ext=menuname" to the
[Menus] section, where "ext" is the extension of the file type, and "menuname" is
the name of the menu file you wish to associate with that file type. For example, if
you wish to add the contents of the menu file TXT.MNW to the context menus of
.TXT files, add the line "txt=txt.mnw". To specify a menu file to associate with
files that do not have an extension, use an extension of ".". For example,
".=menufile".
Note: Extensions can be longer than three characters.
There is a limit on the number of menu items that can be added to a context menu.
This limit seems to be 163 menu items, but it may vary from system to system and
in different releases of Windows. FileMenu shares these resources with other
menu extender programs you may have on a first-come, first-served basis. If the
maximum available menu items is 163, and you have other menu extender
programs installed that use 10 menu items, your FileMenu menus (global + local)
could contain no more than 153 menu items. Of course, FileMenu only loads one
local menu at a time. If your global menu contained 100 items, each of your local
menus could contain up to 53 items.
If you exceed the limit of available menu items, a menu extender program will not
be able to add additional items. If FileMenu is unable to load one of its menus
completely, it will display an error message.
Please refer to the Windows Interface Language Reference Manual, Menu Files
section, for information on menu file structure.

Functions
In addition to the standard WIL functions, FileMenu supports the following
functions (which are documented in the WIL Reference Manual):

CurrentFile CurrentPath CurrFilePath

The following functions are NOT supported:

IsMenuChecked MenuChange
IsMenuEnabled Reload

Utilities

112

Usage Tips, Known Problems and Limitations, etc.
FileMenu processes the "Autoexec" (initialization) section of a menu file every
time an item from that file is executed.
Hotkeys are not supported.
Menu extensions can be loaded and unloaded rather frequently by the operating
system, so there is little benefit in using the "Drop" function.
The menu item below is a main menu for running the program Solitaire.

&Solitaire ; A fun game
 Run("solitaire.exe", "")

The following dialog shows how the menu appears in the Explorer.

PopMenu
Pop-up menu for the Windows Taskbar

Description
PopMenu is a WinBatch desktop interface for Windows batch files written in WIL.
PopMenu batch files are used to automate PC operations and application specific
procedures from a system tray icon. (FileMenu, the other WinBatch menu utility,
is used in manipulating files in the Windows Explorer.)

Utilities

113

PopMenu appears as an icon in the system tray area of the Windows Taskbar. The
Taskbar extends along one edge of the Windows desktop and includes the
"START" Button. A click on the PopMenu (owl) icon brings up a menu of WIL
batch files. Samples are included, but you can completely modify these to meet
your needs.

(PopMenu is a menu-based WIL (Windows Interface Language) application.)

Installation
To install PopMenu:

PopMenu can be installed during the initial install of WinBatch. Make sure the
checkbox option is checked on the setup screen.

Operation
PopMenu is launched at start-up by default. If the PopMenu icon is not displayed
in the System tray on the Taskbar, you can start PopMenu by running
PopMenu.exe.
Activate PopMenu by clicking on its icon (you may have to click twice).
De-activate PopMenu by clicking anywhere outside of the menu.
Close PopMenu by selecting "Close" from its menu. Selecting "Close" will
actually exit PopMenu.

Menu Files
PopMenu allows you to specify two menu files:

• a global menu file, and

Utilities

114

• a window-specific local menu file.
The default global menu file is named PopMenu.mnw. You can change this by
editing the INI file (see "INI Settings" below).
The name of the window-specific local menu file is based on the class name (a
specific Windows program identifier) of the most-recently-active parent window,
with an extension of .MNW added. So, for example, the local menu file for
Explorer (whose class name is "Progman") would be "Progman.MNW". PopMenu
will add a menu item at the top of each menu, allowing you to create or edit the
appropriate menu file for that window, so in general you do not need to know the
actual class names.
Each menu file can contain a maximum of 1000 menu items.
PopMenu searches for menu files using the following sequence:

1. If the menu name contains a path, use it as-is and don’t search.
2. Menu directory ("MenuDir=" INI setting), it uses this directory if set in

PopMenu.ini.
3. Home directory ("HOMEPATH" environment variable), if set in

Windows.
4. Windows directory.
5. PopMenu directory.
6. Other directories on your path.

By default, new menu files created by PopMenu will be placed in your
WinBatch\System directory (the directory where PopMenu.exe is located)
Please refer to the Windows Interface Language Reference Manual, Menu Files
section, for information on menu file structure and how to create the appropriate
menu files.

INI Settings
The following settings can be added to the [PopMenu] section of PopMenu.ini:

MenuDir=d:\path
where "d:\path" is the directory where you want PopMenu to place
menu files that it creates. This will also be the first place PopMenu looks for
menus. The default is the PopMenu directory, unless you are running PopMenu
from a network drive (see "Menu Files", above, for further information).

Editor=editor
where "editor" is the editor you wish to use to edit your menu files.
The default is "NOTEPAD.EXE".

Utilities

115

GlobalMenu=menufile.mnw
where "MENUFILE.MNW" is the name of the global menu file you wish to
use. The default is " PopMenu.mnw".

SkipGlobalMenu=1
Causes PopMenu not to load the global menu file. By default, the global menu file
will be loaded.

SkipLocalMenu=1
Causes PopMenu not to load the window-specific local menu file. By
default, the local menu file will be loaded.

SkipGlobalEdit=1
Causes PopMenu not to add a "Create/Edit menu" item at the top of the global
menu. By default, the menu item will be added.

SkipLocalEdit=1
Causes PopMenu not to add a "Create/Edit menu" item at the top of the local
menu. By default, the menu item will be added.

Functions
In addition to the standard WIL functions, PopMenu supports the following
functions (which are documented in the WinBatch User’s Guide):

BoxOpen
BoxShut
BoxText
BoxTitle

The following optional WIL menu functions are NOT supported by PopMenu:
CurrentFile
CurrentPath
CurrFilePath
IsMenuChecked
IsMenuEnabled
MenuChange
Reload

Usage Tips, Known Problems and Limitations, etc.
You can only run one PopMenu menu item at a time (if you click on the PopMenu
icon while a menu item is currently executing, it will beep).
Sometimes you may have to click on the PopMenu icon twice for the menu to pop
up.

Utilities

116

PopMenu reloads the menu files every time PopMenu bring up its menu. You can
dynamically change the current global menu file while PopMenu is running by
updating the "GlobalMenu=" setting in the [PopMenu] section of PopMenu.ini
(you can even do this from within a menu script using the IniWritePvt function).
PopMenu processes the "Autoexec" (initialization) section of a menu file every
time an item from that file is executed.
Status bar comments are not supported.

WinMacro
Note: WinMacro is not currently supported or installed on Windows Vista or
newer. We recommend using RoboScripter instead.
WinMacro is included as part of the PopMenu utility.
To start up WinMacro, click on the PopMenu icon and select WinMacro menu
command. WinMacro should appear on your screen.
WinMacro can help you cut down on repetitious and time-wasting tasks, by
recording your keystrokes and/or mouse movements.
The built-in script generation, allows the user to get a running start at writing a
WinBatch script. With a simple command or keyboard stroke, your macro can
whiz through tedious tasks like these, giving you more time and less heartache.
See the WinMacro help file for more details.

Browser
Browser is a file viewing utility. It is designed to view files in either a text-only
format or as a hexadecimal file listing. The text may be displayed in various
character sets such as ANSI (normal windows), ASCII (old-style DOS), or
EBCDIC (IBM mainframe). Searching for various strings, copying lines of data to
the clipboard and printing is also supported.
This utility is useful in identifying exactly what kind of file you are looking at, or
to determine the exact binary contents of any file. Except for normal ANSI,
ASCII, or EBCDIC text files, it will not display files in their normal application-
specific format, but it does usually display enough information to get the general
idea of what is in the file.

RoboScripter
RoboScripter is a Control Manager Extender companion program designed to
automatically generate code, which interfaces with standard Windows controls.
It allows near-complete access to all standard Windows controls displayed on the
screen, and especially within Dialog Boxes presented by various applications.
Control types include:

Utilities

117

• Check Boxes can be interrogated, checked, or unchecked.
• Radio Buttons can be interrogated or set.
• Edit Boxes can be interrogated or set.
• Tabbed Dialogs where a particular tab can be selected.
• Contents of List and Combo Boxes can be interrogated and specific

items within the List or Combo Box can be selected.

How do I use it?
The basic technique is to run RoboScripter from the Windows 'Start Menu'.
To launch RoboScripter select 'Start | All Programs | WinBatch | RoboScrp w32.
RoboScripter will prompt you to choose the application, you want to automate.
RoboScripter will then launch that application. If you choose not to launch the
application, select the 'Cancel' button on the 'Run Program' dialog.
You can then drag the cross-hairs to select the target window you want to
automate. Choose the appropriate 'Action', and then select the 'Perform' button.
Continue this process until you are finished. When finished, select the 'Paste'
button, which pastes the generated code into the clipboard. Press the 'Quit' button
when complete.
Now, launch WinBatch Studio. Type 'ctrl-v' to paste the generated code into a file.
Save the file with the extension '.WBT'. Now you can either edit or run the script,
as necessary.
See the Control Manager Extender help file for more details. The Control
Manager Extender is installed by default.

Type Viewer
The WIL Type Viewer is a WinBatch development tool that assists you in writing
Component Object Model (COM) Automation based WIL scripts. The viewer can
be used to examine the type information details of properties, methods, and events
associated with an individual COM object or interfaces, enumerations, and classes
defined in type libraries.
The viewer also allows you to browse lists of objects and type libraries registered
on your system. You can view the detailed type information for these object and
type library by simply selecting the item from a lists.
WIL Type Viewer requires Microsoft® Internet Explorer version 5.0 or newer.
See the WIL Type Viewer help file for more details.

APPENDIX A: Filenames

119

APPENDIX A:
Filenames

WinBatch and Accessories
There are several different platforms on which WinBatch and its utilities may be
run. When a file name is generated, it is made up of four or five characters which
specify what the file is, three characters which specify which platform the PC is
running under and an .EXE or .DLL file extension.

File Name Summary
File names are important in these areas:

1. Running WinBatch scripts.
WinBatch scripts are text files the WinBatch interpreter translates into action. To
do this from a program launcher such as the Run command line , the file name of
WinBatch has to be entered followed by a space and the name of a script.

You can access the Run command by pressing the Windows logo key +R.

APPENDIX A: Filenames

120

2. Compiling WinBatch files with WinBatch Compiler.
If you have the WinBatch Compiler, you have the option of including in the
executable batch file; all, or just the minimum, number of files WinBatch needs to
run a particular script. The Compiler includes selection dialogs for choosing
options. The file name tables are here for general information.

3. Using Accessories.
WinBatch comes with a window position and name grabber called Window
Information.exe. WinBatch also comes with a Dialog Editor. The filenames for
these utilities as well as filenames for WinBatch, Compiler and WinBatch Dlls
are listed below.

WinBatch and Compiler Programs: File Names
Environment WinBatch Compiler
Windows 32-bit &
64-bit Intel

WINBATCH.EXE
WINBATCH_AF.EXE
WINBATCH_AT.EXE
WINBATCH_HF.EXE
WINBATCH_HT.EXE
WINBATCH_IF.EXE
WINBATCH_IT.EXE
WINBATCH_NN.EXE

WBCOMPILER.EXE

WinBatch Required DLL’s: File Names
(?? stands for a two letter code unique to the version of WinBatch.)

Environment WinBatch WIL DLL
Windows 32-bit Intel WBD??44I.DLL
Windows 64-bit Intel WBD??64I.DLL

WinBatch Accessories: File Names
Environment EXE Name
WinBatch Studio WINBATCH STUDIO.EXE
Dialog Editor WIL DIALOG EDITOR.EXE
WIL Type Viewer WIL TYPE VIEWER.EXE
Window Information WINDOW INFORMATION.EXE
File Browser BROWSER.EXE
PopMenu POPMENU.EXE
FileMenu FILEMENU.EXE

APPENDIX A: Filenames

121

Win32 Network Extender: File Name
Environment Extender
Windows 32-bit Intel WWWNT34I.DLL
Windows 64-bit Intel WWWNT64I.DLL

Control Manager Extender: File Name
Environment Extender
Windows 32-bit Intel WWCTL44I.DLL
Windows 64-bit Intel WWCTL64I.DLL

 Extender File Naming Conventions
The following tables show how the filename, minus the extension, is broken down
and defined.
First few characters in the File Name

Program/Utility Filename
Win32 Network Extender WWWNT
Control Manager Extender WWCTL

The second 3 characters in the File Name

Platform Filename
Intel 32-bit version 34I or 44I
Intel 64-bit version 64I

WinBatch DLLs
WinBatch uses the WBD DLL for all standard WIL functions. In order for
WinBatch scripts or compiled EXEs to find and use this DLL, it must be either in
the directory where the WinBatch script file is, or on a system or network search
path. It can be copied there manually, or will be automatically written to disk at
runtime, with the 'Large EXE—standalone option of the Compiler'.
When a script is compiled with the 'Large EXE' option, all the necessary DLLs
will be bundled into the executable. When the EXE starts up, it scouts around
looking for its DLLs. If it cannot locate a copy either in the current directory or
anywhere along the path or in the Windows directory then it un-stuffs the
emergency copy of the DLL and places it in the same directory as the EXE.

APPENDIX A: Filenames

122

If located on a fixed hard drive, it will make the DLLs in the same directory as the
EXE. If executing on removable media (cd rom, zip, flash drives), it will attempt
to create the DLLs in the Windows directory. If it is unable to unload the DLL for
any reason it will fail.
To decrease file sizes, the Compiler also has a 'Small EXE' option.
Small WinBatch executables needs to be able to find all the necessary DLLs. They
can be located in the current directory, on the DOS path, on the search path, or in
the Windows directory. The easiest way to get the initial copies of the DLLs there
is to create a simple WinBatch utility that uses all the DLLs, extenders, and so
forth. Run this once in any directory on the DOS or network search path.
Once the DLLs are extracted, they can be copied anywhere they will be needed. A
convenient place for them is often in the Windows directory since it is always on
the search path.

Name for the WinBatch DLL
The WinBatch DLL name is made up of 3 parts.

The first three digits identify the DLL type.

WBD = WIL Language Interpreter DLL

The second two digits are used for version identification purposes. The letters are
chosen based on the WinBatch version and will change for each new version of the
DLL.

XX = KA, or KD, (some combination of letters)

The final three digits reference the format of the DLL.
34I, 44I or 64I

Here is an example of a Dll for use on Windows on Intel class processors.

WBDLC44I.DLL

APPENDIX B: WinBatch+ Compiler

123

APPENDIX B:
WinBatch+
Compiler

Installing and Using WinBatch+Compiler
This section is applicable only if you purchased WinBatch+Compiler. This is NOT
a "shareware" software product. The Compiler is a separate product and is NOT
included in the purchase of WinBatch, the single-user version. If you would like
additional information on the Compiler and its capabilities, please call Customer
Service.
Because the WinBatch+Compiler includes both WinBatch and the WinBatch
Compiler, registered users of WinBatch can always upgrade to
WinBatch+Compiler at a special price.
The WinBatch Compiler can change a WinBatch .WBT file into any one of the
following:
▪ A small Windows EXE file.
▪ A large standalone Windows EXE file.
▪ An encoded and encrypted WinBatch script file.
▪ A password protected WinBatch script file.
▪ A Windows service EXS file.
No royalties of any kind are required for distribution of any file created by this
compiler.

Compiler Installation
The installation program is itself a Windows application, so make sure Windows is
running when you are ready to install. Make sure that NO WinBatch WBT files are
currently running.
 1) Download the .zip file for WinBatch+Compiler and save to a local drive.
 2) Unzip the .zip file to a new (empty) directory.
 3) Once unzipped, locate and run the SETUP.EXE.

APPENDIX B: WinBatch+ Compiler

124

You will be prompted for the directory to install WinBatch+Compiler into. The
default will be C:\PROGRAM FILES (X86)\WINBATCH. We recommend using
this default directory.
The first time you run the Compiler you will be asked to enter your license
number.
 1) From the Windows Start Menu, select All Programs | WinBatch and run

WBCompiler.exe.
 2) In the "Registration ID" field, enter your License ID. It is generally a 6-

digit number (i.e. 823456).
 3) In the "Control Number" field, enter your 16-alphanumeric License NUM

(i.e. CN01-29*P...etc.). Note: This field is NOT case-sensitive.
 4) Press OK.
 5) You should see a message stating "Thank you for your support.
 6) If you get a message stating 'Invalid licensing Data' then start this process

over from the beginning."

Compiler Usage
The compiler may be run in interactive mode. In interactive mode, the user is
prompted to provide all necessary information via a popup dialog box.
Before you can do anything useful with the Compiler, you must use the WinBatch
file interpreter to create and test a WinBatch script file. Each WinBatch script file
should have a file extension of .WBT, or .WIL.

Notes about the compiler:
The compiler creates a configuration file for each source file you compile. It will
be placed in the same directory as the source file, and will have the same base
name with an extension of ".CMP". For example, if you compile
"C:\UTIL\TEST.WBT", it will create a configuration file named
"C:\UTIL\TEST.CMP". Make sure you do not delete the .CMP files, if you plan to
reuse or remember the previous compiler settings. The .CMP file is basically a
record of the compiled files' last compile settings.

Compiler Command Line
The compiler may be run from the command line. Specify a directory name as the
first parameter to the compiler. A dialog will appear that prompts you to select
from a list of project configuration (.CMP) files in that directory to be compiled in
'batch' mode.

WBCOMPILER.EXE C:\COMPILE

APPENDIX B: WinBatch+ Compiler

125

Or you can specify a full path to a properly formatted .CMP as the first parameter
to the compiler. The will launch the Compiler in Interactive mode with all the
settings loaded from the .CMP file.

WBCOMPILER.EXE C:\COMPILE\BATCH.CMP

Or you can specify a full path to a properly formatted .CMPLIST as the first
parameter to the compiler. See 'Batch Compile' (page 132).

WBCOMPILER.EXE C:\COMPILE\BATCH.CMPLIST

Running the Compiler in Interactive Mode
Start the compiler by double-clicking the compiler icon or the
WBCOMPILER.EXE file name (or by choosing the appropriate item in any menu
system you may be using).

32-bit

• Start | All Programs | WinBatch | WBCompiler exe
• C:\Program Files\WinBatch\System\WBCompiler.exe
• WinBatch Studio menu Debug | Compiler

64-bit

• Start | All Programs | WinBatch | WBCompiler(x64) exe
• C:\Program Files (x86)\WinBatch\System\WBCompiler.exe
• WinBatch Studio menu Debug | Compiler (x64)

The compiler also supports "Drag and Drop" compiling. Select the WinBatch
source file (WBT or WIL File) and drag it over the WBCOMPILER.EXE icon and
drop the source file. A dialog box will be displayed asking for input. The source
file you specified will be automatically displayed as the source file for the
compile.
Select the type of compile desired (large EXE, small EXE, encoded or encrypted),
choose the source .WBT file, and supply an output file name.
If you wish, choose an icon along with any necessary extenders. Press the OK
button. The compiler will process for 5 to 10 seconds, and then report that the file
has been compiled.
The compiler does not perform error checking. It is assumed the WBT file has
been properly debugged with the WinBatch interpreter prior to the compile step.

APPENDIX B: WinBatch+ Compiler

126

When you launch the Compiler EXE, a dialog box similar to the following will be
displayed:

Options
The OPTIONS button allows you to select which type of executable file you
would like to create from your WBT file.

Large Executable Utilities for Standalone PC’s (includes accessory
DLLs, Extenders, OLE 2.0, etc.)

This option creates an EXE designed for Standalone PC’s and does not require any
extra Dlls, unless you specify additional Dlls in your script with the AddExtender
function. When a Standalone EXE is launched on a PC, the necessary Dlls are
automatically written into the current directory. If for some reason, they cannot be
written to that directory (perhaps the directory is set to be "Read Only"), the large
compiled file will not run.
The Dlls can also be copied into a directory on a computer’s PATH where the
compiled EXE will find them there and execute successfully. The Compiler has a
small EXE option that takes advantage of this configuration.

APPENDIX B: WinBatch+ Compiler

127

The Dlls need to be placed on the PATH only once. Subsequent EXE files
installed on this same machine can be compiled with the Small EXE option, so that
multiple compiled EXEs can use a copy of the WinBatch Dll located in a single
place, resulting in easier file maintenance.
If Network commands have been used, you will need to compile the Network
Extender Dlls into the EXE, by clicking on the "Extenders" button. This is
explained more specifically in the section, EXTENDERS, see page 71.

Small Utilities for Networked PC’s (without accessory files)
This option is suitable for network file server installation, and for distribution with
separate Dll files. It makes a smaller EXE that loads faster over a network. You
also know what copies of the Dlls are being used as you have to manually placed
them.
One trick is to compile the setup program with the Large EXE option, and have it
create the required Dlls. Subsequent EXEs can all be compiled with the small EXE
option, because the Dlls already exist. For Network installations we recommend
the small EXE with copies of the required Dlls in the same directory.
You have a couple of choices in terms of where to locate the Dlls:

 1. Place a copy of the Dll in some directory that is on your system path. The
EXE will use that copy instead of making a new one.

 OR

 2. Make a directory for the EXE and just put a shortcut to it from the desktop.

When a small WinBatch utility is run, it will look in the Windows directory and
the directories in the environment PATH variable for the Dll’s. Place the
WinBatch Dll’s, and network extender Dll’s on the path or search drive. If you
launch this utility on a PC in which a large standalone utility has been run
previously, the small utility can use the same Dlls the large one installed.
Hint: You can automatically install the Dll’s on the PATH in a computer. Create a
large executable containing only a single statement:

Display(1,"WinBatch","WinBatch installed. Thank You.").

You can change this statement as you like. Then, compile this as a large EXE with
all the Dll’s your scripts are ever likely to need. Copy it into the Windows System
directory, and run it from there. The Dll’s will be installed once and for all. Any
subsequent batch files run on that computer can be small compiled EXEs that
don’t need the Dll’s already installed on that computer.

APPENDIX B: WinBatch+ Compiler

128

Encode for Call’s from EXE files
This option makes files that can be "called" from a compiled EXEs. It creates an
encoded WBT file.
Encoded WBT files provide the following:

• Source code that is protected from unauthorized or accidental
modification.

• Encoded WBT files may be CALL’ed from compiled files.

If your code has a Call to another WBT file, the called WBT must be compiled
with this option. Otherwise, when you run your EXE, you will get an
"Encrypted/Encoded Verification Failed" Error.
Note: When you compile your file, a new target filename will be created with a
.WBC extension. It is necessary to have a different filename from the original
filename. You cannot compile a file to its own name without corrupting the file.
To protect the innocent, the default target extension is .WBC. After compiling, edit
the uncompiled script file and change the Call statement to reflect the new
filename extension .WBC. Then recompile the main EXE.

Encrypted with Password
This option encrypts a WBT file and uses a default target extension of .WBE. The
WinBatch interpreter (WINBATCH.EXE, or version specific WinBatch
interpreter) is needed to access the encrypted file. During compilation, you must
input a password in to the compiler dialog. The same password must be supplied
when the WBT file is run. The purpose of an encrypted WBT file is to prevent
unauthorized personnel from executing it.
Since encryption is easily added to WinBatch utilities, this option is rarely used. In
fact, no one has ever been known to use it. Like the human appendix, it reminds
one of evolutionary events, while avoiding the performance of any useful function.

Extenders
The EXTENDERS button displays a list of extenders which can be chosen and
compiled into a Standalone EXE option. More than one extender may be chosen. If
any of the Network extender functions are used, the corresponding extender must
be compiled into the Standalone, or placed in the Windows directory, or on the
network path for a Small EXE to access. The extenders will be displayed in the
WinBatch Compiler Dialog box when you click on the EXTENDERS button.
After you make a selection of all the extenders you would like to include, they will
be displayed next to the extenders button on the dialog box.

APPENDIX B: WinBatch+ Compiler

129

Source
The SOURCE button displays a File Selection Box. Select your file or type the
filename and path into the File Name box and press OPEN. The path and filename
will be displayed in the WinBatch Compiler dialog box next to the SOURCE
button.
Note 1: Source and Target names:

After you select a SOURCE file, a default TARGET name will be generated and
displayed next to the TARGET button. To change the default name, click on the
TARGET button.

Target
The TARGET button displays a File Selection Box. Select your file or type the
filename and path into the File Name box and press SAVE. The path and filename
will be displayed in the WinBatch Compiler dialog box next to the TARGET
button.

Note: A default target filename and path will generally be generated from
the SOURCE filename and path.

Other Files
The OTHER FILES button displays a File Selection Box of files which can be
selected and compiled into a Standalone EXE. More than one file may be chosen.
The selected files will be displayed in the WinBatch Compiler Dialog box next to
the OTHERFILES button.

Icon
The ICON button displays a File Selection Box which allows you to choose an icon.
Select your .ICO file and press OPEN. The path and icon filename will be displayed
in the WinBatch Compiler dialog box next to the ICON button.

WinBatch+Compiler comes with icons you can use. These are in an ICONS
subdirectory of your WinBatch directory.

Note:

1. Icon files must be named with the standard .ICO file extension.
2. The icon (.ICO) file can contain a single icon group. An icon group is a set of

one or more associated icon images, of different dimensions and color depths.
3. The icon must have all six definitions of the following icons. If the icon doesn't

have all six definitions, some of the icons will not get replaced and the wrong
icon can get displayed.

APPENDIX B: WinBatch+ Compiler

130

Dimensions Color depth

16x16 4 bit (16 color)
 8 bit (256 color)

32x32 4 bit (16 color)
 8 bit (256 color)

48x48 4 bit (16 color)
 8 bit (256 color)

Note: 32 bit (True color) color depth is not currently supported in the compiled
EXEs.

4. Consult the tech support area of our website for some links to icon format tools.
Go to http://techsupt.winbatch.com, and search for 'Icon Formatting Tools'.

Settings
The SETTINGS button displays a dialog for configuration settings.

Tech Support URL
URL (i.e., http://www.example.com) for technical support, which will be
displayed in WinBatch error messages.

Run Script Hidden
If this option is selected the WinBatch icon will not appear on the desktop or in the
Taskbar, when the EXE is executed.

Force Large EXE file extract to EXE folder on removable drives.
If this option is selected and the EXE is located on a removable drive, it will force
the EXE to extract the files to the removable drive.

Skip auto-extraction of "Extender" and "Other Files"
 If this option is selected the compiled EXE will NOT extract the Extender and
Other files automatically. The function Extract Attached Files can be used to
programmatically extract the files as needed.

APPENDIX B: WinBatch+ Compiler

131

Vista UAC Settings
Requested Execution Level

Value Description Comment

asInvoker The application runs with
the same access token as
the parent process.

Recommended for
standard user
applications.

highestAvailable The application runs with
the highest privileges the
current user can obtain.

Recommended for
mixed-mode
applications.

requireAdministrator The application runs only
for administrators and
requires that the
application be launched
with the full access token
of an administrator.

Recommended for
administrator only
applications. The
application is already
running elevated.

uiAccess Flag

Value Description

False The application does not need to drive input to the user interface of
another window on the desktop. Applications that are not providing
accessibility should set this flag to false. Applications that are
required to drive input to other windows on the desktop (on-screen
keyboard, for example) should set this value to true.

True The application is allowed to bypass user interface control levels to
drive input to higher privilege windows on the desktop. This setting
should only be used for user interface Assistive Technology
applications.

Important

Applications with the uiAccess flag set to true must be Authenticode signed to
start properly. In addition, the application must reside in a protected location in the
file system. \Program Files (x86)\ and \Windows\System32\ are currently the two
allowable protected locations.

Sign Code

If this option is selected the EXE will be 'signed' using the information specified
by the 'Signing Details' button. Note: Future versions of Microsoft Vista will
require all code to be signed, when UAC is enabled.

APPENDIX B: WinBatch+ Compiler

132

Signing Details

Prompts for the 'friendly name' of the signing certificate, an optional description of
the EXE and an option website URL.

UAC and Code Signing Help

Launches help for more information about UAC and code signing.

Version Info
The VERSION INFO button displays a dialog that allows you to specify Version
information strings. These are the version strings that will be displayed in the
Properties dialog, that is displayed when you right-click, and select "Properties",
on the compiled EXE. The selected modifications are not displayed in the
WinBatch Compiler Dialog box next to the VERSION button.
FileVersion and ProductVersion fields match the corresponding string fields. The
strings should be specified as a series of up to four numeric fields, delimited by
periods or commas or spaces (eg, "3.01" or "5,1,2,0" or "2000 1 2"). Any missing
or non-numeric fields will be converted to 0.

Multi
The MULTI… button displays a dialog that allows you to select from a list of
project configuration (.CMP) files in that directory to be compiled.
Note that these .CMP files must contain a "Src=" setting in the [Main] section to
identify the source file to be compiled, and this setting was not written by earlier
versions of the compiler, but can be added manually. The source file must be
located in the same directory as the .CMP file.

Batch Compile
WinBatch+Compiler supports the following command line for ‘batch compilation'
of WinBatch scripts:

"C:\Program Files (x86)\WinBatch\System\WBCompiler.exe"
"C:\WBProjects\Test.cmplist"

A batch compile does require a little setup in order to work.
First you must have .CMP file for each script you want to compile. A .CMP file is
a configuration file that contains all the compile options used. A .CMP file
automatically gets generated each time you successfully compile any script.
The format of the .CMP file is as follows:

[Main]

APPENDIX B: WinBatch+ Compiler

133

Type=1
Src=test1.wbt
Targ=C:\WBProjects\test1.exe
Icon=
CmpVersion=4

[Options]
TechWebPage=
UACManifestSelection=highestAvailable
UACManifestUI=false
CodeSign=0
CodeSignDetails=WWWTEST~~
RunHidden=0
LargeExtractDest=0
PreventAutoExtract=0

[Version Info]
Comments=
CompanyName=Wilson WindowWare Inc
FileDescription=test1
FileVersion=1.0
InternalName=test1.exe
LegalCopyright=Wilson WindowWare Inc
LegalTrademarks=
OriginalFilename=test1.exe
ProductName=test1
ProductVersion=1.0

[Other Files]
Count = 0

[Extenders]
Count = 0

Note: You could feasibly create a .CMP file on the fly. The internal format of the
.CMP file is the same as .INI files. You can use all of the WinBatch Ini_Pvt()
functions to manage these files.
CMP file format explained:

[MAIN]
Type = [REQUIRED] compile option. (1 = Large, 2 = Small)
Source = [REQUIRED] source file to compile. (.WBT or .WIL)
Target = [REQUIRED] Path to Exe name.
Icon = Path to Icon filename.
CmpVersion = Version of CMP file. (Subject to change)

[OPTIONS]
TechWebPage = URL displayed in WinBatch error (http://www.example.com)
UACManifestSelection = Requested Execution Level. (highestAvailable)
UACManifestUI = Manifest uiAccess. (true or false)
CodeSign = Code sign settings. (1 = true, 0 = false)
CodeSignDetails = Code signing certificates friendly-name. (WWWTEST)

APPENDIX B: WinBatch+ Compiler

134

RunHidden = Hides EXEs icon on the task bar. (1 = true, 0 = false)
LargeExtractDest = Force EXE to extract files. (1 = true, 0 = false)
PreventAutoExtract = Prevent extract of files. (1 = true, 0 = false)

[Version Info]
Comments = Comments about EXE. ("My Test EXE")
CompanyName = Company name. ("Wilson WindowWare Inc")
FileDescription = Description of EXE. (test1)
FileVersion = File version number of the EXE. (1.0)
InternalName = Name of the EXE file. (test1.exe)
LegalCopyright = Copyright info. ("Wilson WindowWare Inc")
LegalTrademarks = Trademark info. ("X is a registered trademark of Y")
OriginalFilename = Name of the EXE file. (test1.exe)
ProductName = Product name of the EXE file. (Test1)
ProductVersion = Product version of the EXE file. (1.0)

[Other Files]
Count = Total number of other files included. (2)
File001 = Path of the 'Other file' to include. (C:\sample1.txt)
File002 = Path of the 'Other file' to include. (C:\sample2.txt)
Etc…

[Extenders]
Count = Total number of Extender files included. (2)
File001 = 'Extender' file to include. (wwctl44i.dll)
File002 = "Extender' file to include. (wwwnt34i.dll)
Etc…

You will then need to create a specially formatted file with the file extension of
.CMPLIST.
For Example:

C:\WBProjects\Test.cmplist

The .CMPLIST file must include a single line that contains the full path to the
.CMP files for *each* script you would like to batch compile.
For Example:

C:\WBProjects\test1.cmp
C:\WBProjects\test2.cmp
C:\WBProjects\test3.cmp

You *must* specify a full file path to each .CMP file in the .CMPLIST file.
Ideally you should put all these .CMP files into a single ‘Project’ directory.
However you can specify paths to all the various .CMP files regardless of the
directory.
Now that you have successfully created a .CMP file for each script and also
created a .CMPLIST file, you can create your ‘Batch Compile’ script.

APPENDIX B: WinBatch+ Compiler

135

For Example:

;BatchCompile.wbt
wbcompiler = 'C:\Program Files (x86)\WinBatch\System\WBCompiler.exe'
cmplistfile = '"C:\WBProjects\Test.cmplist"' ; Notice use of quotes to
handle file names with spaces
Run(wbcompiler, cmplistfile)
Exit

IMPORTANT:
The .CMP file information must be correct or this compile process will fail.
The .WBT source file must be located in the same directory as the .CMP file.
The .CMPLIST file information must be correct or this compile process will fail.

Run as a Native Service
It is possible to create a compiled WinBatch program that will run as a native
service under Windows NT or newer. To do this, compile the WinBatch script as
usual using the 'Small EXE for Networked PC's' option in the WinBatch Compiler,
but make sure to specify an output file with an extension of ".EXS" instead of
".EXE". Alternatively, you can simply rename an existing WinBatch program
(version 2001 and higher) by changing its extension from ".EXE" to ".EXS".
You can install a WinBatch service (or any service) using the wntSvcCreate
function in the WIL Windows NT extender (see the Win32 Network Extender help
file).
A WinBatch service can be configured in the Service Manager (in Control Panel)
to run automatically on system startup, or manually on demand.
In either case, when the WinBatch service starts up, it processes the script just like
a normal WinBatch program.
If you want the WinBatch service to wait for a particular time or event to occur,
you can use any of the normal WIL methods (TimeDelay, TimeWait,
WinWaitExist, etc.). You can also use any of the following service functions:
SvcSetAccept, SvcSetState and SvcWaitForCmd.
You can also use loops or branching (For, While, Goto, etc.) to cause the
WinBatch service to continue running for an indefinite period of time. When
processing reaches the end of the script (or a Return or Exit command, or a
Cancel event), the WinBatch service will automatically stop. You can force a
WinBatch service to stop prematurely by using the "Stop" function in the Service
Manager (in Control Panel), or using another service control program (such as the
wntSvcControl function in the WIL Windows NT extender). A WinBatch service
will exit automatically on Windows shutdown.
If you are making a WinBatch service that will not be installed as an interactive
service, you should use IntControl(38) at the beginning of the script to prevent

APPENDIX B: WinBatch+ Compiler

136

WIL from displaying any unexpected error message boxes. If a non-interactive
service attempts to interact with the desktop, it can cause the script to hang.

Notes: A service that is running under the LocalSystem account cannot access
network resources.

To have a service access the desktop, that service must log on as the LocalSystem
account, and be allowed to interact with the desktop.

;Initialize variables for the SvcSetAccept function
SERVICE_ACCEPT_STOP = 1 ;The service can be stopped
SERVICE_ACCEPT_PAUSE_CONTINUE = 2 ;service can be paused & continued
SERVICE_ACCEPT_SHUTDOWN = 4 ;service notified of system shutdown
SERVICE_ACCEPT_LOGOFF = 32768 ; service notified of user logoff

;Initialize variables for the SvcSetState function
SERVICE_STATE_STOPPED = 1 ;The service is not running
SERVICE_STATE_STOP_PENDING = 3 ;The service is stopping
SERVICE_STATE_RUNNING = 4 ;The service is running
SERVICE_STATE_CONTINUE_PENDING = 5 ;The service continue is pending
SERVICE_STATE_PAUSE_PENDING = 6 ;The service pause is pending
SERVICE_STATE_PAUSED = 7 ;The service is paused
;Initialize variables for the SvcWaitForCmd function
SERVICE_CONTROL_NOT_SERVICE = -1 ;Script not running as a service
SERVICE_CONTROL_TIMEOUT = 0 ;Timeout occurred or no codes to process
SERVICE_CONTROL_STOP = 1 ;Requests the service to stop
SERVICE_CONTROL_PAUSE = 2 ;Requests the service to pause
SERVICE_CONTROL_CONTINUE = 3 ;Requests the paused service to resume
SERVICE_CONTROL_SHUTDOWN = 5 ;Requests the service to perform
 ;cleanup tasks, because the system
 ;is shutting down
SERVICE_CONTROL_USER128 = 128 ;User command 128
SERVICE_CONTROL_USER129 = 129 ;User command 129
SERVICE_CONTROL_USER130 = 130 ;User command 130
SERVICE_CONTROL_USER131 = 131 ;User command 131
;More user commands as needed
SERVICE_CONTROL_USER255 = 255 ;User command 255
SERVICE_CONTROL_LOGOFF = 32768 ;logoff notification
;Setup debugging prompt strings....
debugcodes="0: Timeout|1: Stop|2: Pause|3: Continue|5: Shutdown|128: User
Cmd 128|129:User Cmd 129|32768: Logoff"
;Tell system that we want all notifications
flag=SvcSetAccept(SERVICE_ACCEPT_STOP | SERVICE_ACCEPT_PAUSE_CONTINUE |
SERVICE_ACCEPT_SHUTDOWN | SERVICE_ACCEPT_LOGOFF)
If flag== -1
 DoingDebug=@TRUE
 Pause("Debug Mode","Not currently running as a service")
Else
 DoingDebug=@FALSE
 ;Set up error handling
 IntControl(12,2+8,0,0,0) ;Tell WinBatch to not honor terminate and
 ;not complain on Windows exit

APPENDIX B: WinBatch+ Compiler

137

 IntControl(38,1,"errorlog.txt",0,0) ;Route errors to log file
EndIf
;Now for the main service loop
;in this service we respond to all control messages
BoxOpen("Initializing","main service loop")
While @TRUE
 If DoingDebug==@FALSE
 code=SvcWaitForCmd(5000) ;Timeout in 5 seconds
 Else
 ;For Debugging.
 ;Prompt tester to see what code should be pretended here
 code=AskItemlist("Service Debug", debugcodes, "|", @UNSORTED,
 @SINGLE)
 If code=="" Then Continue
 code=ItemExtract(1,code,":")
 EndIf

 Switch code
 Case SERVICE_CONTROL_TIMEOUT
 ;Timeout occurred
 BoxTitle("SERVICE_CONTROL_TIMEOUT")
 ;!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
 GoSub DoWork
 ;!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
 Break
 Case SERVICE_CONTROL_STOP
 ;Stop command received
 BoxText("Stop command received")
 SvcSetState(SERVICE_STATE_STOP_PENDING)
 ;do stop cleanup work here
 TimeDelay(5)
 SvcSetState(SERVICE_STATE_STOPPED)
 Exit ;Goodbye
 Break
 Case SERVICE_CONTROL_PAUSE
 ;Pause command received
 BoxText("Pause command received")
 SvcSetState(SERVICE_STATE_PAUSE_PENDING)
 ;do pause cleanup work here
 SvcSetState(SERVICE_STATE_PAUSED)
 Break
 Case SERVICE_CONTROL_CONTINUE
 ;Continue command received
 BoxText("Continue command received")
 SvcSetState(SERVICE_STATE_CONTINUE_PENDING)
 ;do resume from pause state initialization here
 SvcSetState(SERVICE_STATE_RUNNING)
 Break
 Case SERVICE_CONTROL_SHUTDOWN
 ;Shutdown notification received
 ;Approx. 20 seconds to process
 BoxText("Shutdown notification received")
 SvcSetState(SERVICE_STATE_STOP_PENDING)

APPENDIX B: WinBatch+ Compiler

138

 ;do stop cleanup work here
 SvcSetState(SERVICE_STATE_STOPPED)
 Exit ;Goodbye
 Break
 Case SERVICE_CONTROL_USER128
 ;User command 128 received
 BoxText("User command 128 received")
 Break
 Case SERVICE_CONTROL_USER129
 ;User command 129 received
 BoxText("User command 129 received")
 Break
 Case SERVICE_CONTROL_LOGOFF
 ;Logoff command received
 BoxText("Logoff command received")
 Break
 Case code
 ;Unrecognized command received
 BoxText("Unrecognized command received")
 Break
 EndSwitch

EndWhile

;Note. The preceding loop never exits
Exit ; Just a formality
;;;
;The DoWork subroutine can be used to execute the code you want to
;run while the service has not control requests
:DoWork
 BoxText("WinBatch Services test is running")
Return

Network Considerations
If you plan to put the compiled EXEs on a network, the following information will
be helpful:
1) Set the compiled EXE files to read-only so that multiple users may access the

same file.
2) Copy the Dlls from the WinBatch\System subdirectory in the Explorer, to a

file server directory in the search path and set the Dlls as read-only. (see
Filenames Appendix A)

3) When the compiler, or any compiled WBTs with the large Standalone option
selected, are run, they will search the entire PATH for any required Dlls (see
Filenames Appendix A). If the Dlls are not found, they will be created in the
same directory as the compiled EXE.

APPENDIX B: WinBatch+ Compiler

139

UAC and Code Signing
The WinBatch+Compiler allows you to create and embed an application manifest
and to sign your code. The SETTINGS button in the WinBatch+Compiler can be
used to specify the appropriate options.
To find out more about code signing WinBatch EXEs, see the 'Code Signing'
section in the WinBatch.chm help file.

Application Manifest
One of the requirements that User Account Control (UAC) puts on developers is
that you must mark your applications with a 'manifest' to declare if the application
would like to run elevated or not. The WinBatch+Compiler allows you to select
UAC related settings: 'Requested Execution Level' and 'uiAccess Flag'.
Requested Execution Level:
Value Description Comment
asInvoker The application runs with

the same access token as
the parent process.

Recommended for
standard user
applications.

highestAvailable The application runs with
the highest privileges the
current user can obtain.

Recommended for
mixed-mode
applications.

requireAdministrator The application runs only
for administrators and
requires that the
application be launched
with the full access token
of an administrator.

Recommended for
administrator only
applications. The
application is already
running elevated.

uiAccess Flag:
Value Description
false The application does not need to drive input to the user interface of

another window on the desktop. Applications that are not driving
the 'user interface' should set this flag to false. Applications that are
required to drive input to other windows on the desktop (WinBatch
driving another application via the Control Manager Extender, for
example) should set this value to true.

true The application is allowed to bypass user interface control levels to
drive input to higher privilege windows on the desktop. This setting
should only be used if required.

Important: Applications with the uiAccess flag set to true must be code signed to
start properly. In addition, the application must reside in a protected location in the

APPENDIX B: WinBatch+ Compiler

140

file system. Program Files and \Windows\System32\ are currently the two
allowable protected locations.

Code Signing
In order to run a compiled WinBatch EXE, that contains Control Manager
Extender functions, on a Windows System with UAC enabled requires that the
'uiAccess flag' is set to true and that the EXE is 'Signed' by a 'Trusted Authority'.
In addition, if you do not code sign the EXE then UAC makes your program
appear as if it's a malware or a virus program. When you run an EXE on Vista or
newer you may receive a message asking you whether or not you trust the
application you are about to run. If your EXE is not digitally signed then the
Popup message will reference an "Unknown Publisher". If the EXE is digitally
signed it will reference your own information in the Popup message.
NOTICE: Down the road, Windows will require any EXE, regardless of
functionality, running under UAC, to be signed and trusted.
What is a certificate?
Code Signing certificates allow you to 'digitally sign' your EXEs for secure
delivery of your software. By digitally signing your EXE you are letting the user
know the software is safe.
To create a digital signature you will need 'a key pair': a public key and a private
key. The private key is known only to its owner (you) and is used to sign the data.
The public key can be distributed to anyone and is used to verify the signature on
the data.
Digital certificates bind YOU to the specific public and private key pair. Digital
certificates are like an electronic ID that verifies your identity. You can obtain a
certificate from a certificate authority (CA), which vouches for the certificate. A
CA generally requires you to provide unique identifying information. The CA uses
this information to authenticate your identity before giving you a certificate.
Sources for digital certificates
'Self-signed' method for generating a digital certificate. The selfcert.exe tool from
Microsoft can be used to create one. This approach allows you to test the operation
of digital certificates, but it has limited practical use because no independent party
verifies the authenticity of the certificate.
Windows Certificate Services within an organization to create certificates
recognized by those within the organization and other groups, such as suppliers or
consultants that work closely with an enterprise-based issuer of certificates. These
certificates are trusted by those in the organization as well as close associates.
Certificates issued by a widely recognized trusted certifying authority.
(RECOMMENDED)
Where do I buy a Certificate?

APPENDIX B: WinBatch+ Compiler

141

There are many different Certificate Authorities (i.e., VeriSign and Thawte). For a
more complete list check out 'Microsoft Root Certificate Program Members' list:
http://msdn2.microsoft.com/en-us/library/ms995347.aspx

#Include
The "#include" is a pre-processor directive. This command gives you the ability to
embed external WBT files when running or compiling a WinBatch script.
Any of the following are permitted:

 #include "filename"
 #include 'filename'
 #include `filename`
 #include filename

Nothing else should appear on the line, including comments.
The file name may contain path information. If the 'include' command contains
relative path information, the check begins relative to the current script's location.
If the file is not found then a check is conducted relative to the current working
directory. When both of those locations fail then a standard Windows file search is
performed. The standard Windows file search varies somewhat by location order
depending on the OS version and a few registry settings. The typical locations are:

• The directory from which the application loaded.
• The System directory.
• The Windows directory.
• The current directory.
• The directories that are listed in the PATH environment variable.

Of course, if the file information is absolute then the absolute path is used to
attempt to open the included file. Each line containing a #include directive will be
replaced by the contents of the specified WBT file. If the file cannot be found, an
error will occur.
When using the WinBatch Compiler, the "included" file(s) must be present at
compile time; it will be embedded in the compiled EXE, and therefore do not need
to be distributed as separate files.
When using the interpreted version of WinBatch, the "included" file(s) must be
present at the point in time when the script is launched (it cannot be created "on-
the-fly" from within the script).
You can have as many #include directives as you wish, and they may be nested
(i.e., "included" files may themselves contain #include directives).

Error Appendix

143

Error Appendix
10102: WinBatch - Unrecognized ParentProcess request code
10104: WinBatch: EnvironSet Var and/or Value too long
10105: WinBatch: EnvironSet - Failed. No space?
10106: WinBatch: EnvironGet - Failed. Name too long?
10107: WinBatch: EnvironGet - Failed. Value too long?
10108: Box functions: Box command stack full
10109: Box functions: Invalid box ID
10110: BoxButtonDraw: Invalid button ID
10111: BoxButtonDraw: Invalid 'rect' string
10112: BoxButtonStat: Invalid button ID
10113: BoxColor: Invalid color string
10114: BoxColor: Invalid 'wash' color
10115: BoxDrawRect: Invalid 'rect' string
10116: BoxDrawLine: Invalid 'rect' string
10117: BoxNew: Invalid 'rect' string
10118: BoxNew: Invalid 'style' flag
10119: BoxNew: Unable to create box
10120: BoxPen: Invalid color string
10121: BoxPen: Invalid pen width
10122: BoxTextColor: Invalid color string
10123: BoxTextFont: Invalid font size
10124: BoxTextFont: Invalid font style
10125: BoxTextFont: Invalid font family
10126: BoxDrawText: Invalid 'erase' flag
10127: BoxDrawText: Invalid 'alignment' flag
10128: BoxDrawText: Invalid 'rect' string
10129: BoxUpdates: Invalid 'update' flag
10130: BoxesUp: Invalid 'rect' string
10131: BoxesUp: Invalid 'show' mode
10132: BoxMapMode: Invalid map mode

Error Appendix

144

10133: BoxDrawRect: Invalid style
10134: BoxDrawCircle: Invalid 'rect' string
10135: BoxDrawCircle: Invalid style
10136: BoxButtonDraw: Unable to create button
10137: BoxButtonKill: Invalid button ID
10138: BoxDataClear: Specified tag not found
10139: IntControl: Unrecognized Request
10140: BoxBitmap: Invalid 'stretch' mode
10141: ExtractAttachedFile: Function supported only in compiled version
10142: ExtractAttachedFile: Target file name must be specified
10143: ExtractAttachedFile: Error finding or extracting specified file
10144: ExtractAttachedFile: Invalid request
10145: IntControl 1006: Unable to allocate or lock memory

Glossary of Terms

145

Glossary of Terms
(a) a value that must be an array
(f) A value that must be in floating point format. This means that

the number must include a number, a decimal point, and
another number as in 0.123 or 456.2256. Exponentials of the
form 4.9e7 are always floating point. Floating point numbers
can include signs before the entire number, or before the "e"
that stands for exponent.

(i) A value that must be an integer.
(r) A value that must be a COM object reference
(s) A string value is from one to many alphabetic and/or numeric

characters enclosed in quotation marks. Double quotes, single
quotes and back quotes are equally acceptable as quotation
marks.

(t) Indicates special type information described in the function’s
text.

applications Software programs that use one main window along with a
menu bar. An example of an application would be a
spreadsheet.

batch
language

A programming language that automates a process, by
processing events in a step-by-step fashion. Batch languages
are interpreted at run time.

code signing Code Signing certificates confirm publisher details and
content integrity of code.

constant A value that does not change. WinBatch has many built-in
constants. Useful ones include @CRLF and @TAB for
inserting these into lines of text in dialogs.

dynamic link
libraries

Also called "Dlls". A Dll is an accessory file used by other
Windows programs. Dlls can be actual program files without
the EXE extension, libraries of executable routines, or even
simple data files. The information in Dlls can be utilized
through the WIL DllCall() function.

icon A small picture that represents an application. Several sizes
are available for use under Windows.

interpreter A software program that reads a script file one line at a time.
It examines the line, finds directives that indicate action, and

Glossary of Terms

146

then instructs the computer to carry out them out.
macro
scripting
language

A computer language that reads lines in a text file and turns
them into action on that computer. The term "macro" comes
from the capability of completing numerous operations in
sequence.

menu items Selections from a list of items found at the top border of the
main windows of a Windows application.

MS-DOS A personal computer operating system produced and
marketed by Microsoft Corporation.

OLE 2.0 A specific version of a scheme of inter-program data
exchange called Object Linking and Embedding. It is an
extension of DDE and the Windows Clipboard. There are
several OLE capabilities. WinBatch and WIL support OLE
2.0 automation. This is the capacity of one program to
automate anything that an application can do.

operators Actions that transform one numeric value into another. An
example is the addition operator "+". It takes one numeric
value, adds it to a second and makes the result available for
display or use by another operator.

plain text Text containing only letters and numbers. It must not contain
hidden codes for formatting or null characters. Word
processors do not normally produce plain text. They can,
however, be directed to do so. Windows word processors
generally provide this option in the File SaveAs menu.

register Obtain a license to use software.
script file A computer file generated by a text editor. It contains a list of

statements that can contain both directives and comments.
system
management
utilities

Short programs for manipulating any operations on a
computer. Generally they automate activities that otherwise
need to be done repetitively and manually.

UAC User Account Control (Vista and newer).
utilities Utilities manipulate applications, the operating system, and

the Windows interface.
WIL Windows Interface Language (WIL) is the actual

programming language used by WinBatch. WinBatch is a
processor that interprets WIL directives and directs the
computer to carry out these directives.

